欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    人教A版高二数学必修五第三章332第2课时简单线性规划的应用(共33张)课件.ppt

    • 资源ID:1955762       资源大小:891.40KB        全文页数:33页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    人教A版高二数学必修五第三章332第2课时简单线性规划的应用(共33张)课件.ppt

    第2课时 简单线性规划的应用,第2课时 简单线性规划的应用,在实际问题中常遇到两类问题: 一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;,二是给定一项任务,如何合理地安排和规划能以最少的人力、物力、资金等资源来完成它.,下面我们来看看线性规划在实际中的一些应用.,在实际问题中常遇到两类问题: 二是给定一项任务,如何合理,1.体会线性规划的基本思想,并能借助几何直观解决一些简单的实际问题;(重点)2.利用线性规划解决具有限制条件的不等式;3.培养学生搜集、整理和分析信息的能力,提高学生数学建模和解决实际问题的能力.,1.体会线性规划的基本思想,并能借助几何直观解决一些简单的,一、用量最省问题,例1 营养学家指出,成人良好的日常饮食应该至少提供0.075 kg的碳水化合物,0.06 kg的蛋白质,0.06 kg的脂肪.1 kg食物A含有0.105 kg碳水化合物,0.07 kg蛋白质,0.14 kg脂肪,花费28元;而1 kg食物B含有0.105 kg碳水化合物,0.14 kg蛋白质,0.07 kg脂肪,花费21元.为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A和食物B多少kg?,探究点1 简单线性规划问题及在实际问题中的应用,一、用量最省问题例1 营养学家指出,成人良好的日常饮食应该,分析:将已知数据列成下表:,解:设每天食用x kg食物A, y kg食物B, 总成本为z.那么x,y满足的约束条件是:,目标函数为z=28x+21y.,分析:将已知数据列成下表:0.070.140.1050.14,作出二元一次不等式组所表示的平面区域,即可行域.,二元一次不等式组等价于,作出二元一次不等式组所表示的平面区域,即可行域. 二元一,人教A版高二数学必修五第三章3,x,O,y,由图知,当直线,经过可行域上的点M时,截距,最小, 即z最小.,xOyM由图知,当直线经过可行域上的点M时,截距最小, 即z,解方程组,得M的坐标为,所以zmin=28x+21y=16.,答:每天食用食物A约143 g,食物B约571 g,能够满足日常饮食要求,又使花费最低,最低成本为16元.,解方程组得M的坐标为所以zmin=28x+21y=16.答:,解线性规划应用问题的一般步骤:1.理清题意,列出表格;2.设好变量,列出线性约束条件(不等式组)与目标函数;3.准确作图;4.根据题设精确计算.,【提升总结】,解线性规划应用问题的一般步骤:【提升总结】,例2 要将两种大小不同的钢板截成A,B,C三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:,今需要A,B,C三种规格的成品分别15,18,27块,用数学关系式和图形表示上述要求各截这两种钢板多少张可得所需A,B,C三种规格成品,且使所用钢板张数最少?,规格类型,钢板类型,例2 要将两种大小不同的钢板截成A,B,C三种规格,每张钢板,分析:列表,分析:列表A规格B规格C规格第一种钢板第二种钢板211213,解:设需截第一种钢板x张,第二种钢板y张,共需截这两种钢板共z张,则,线性目标函数,解:设需截第一种钢板x张,第二种钢板y张,共需截这两种钢板共,2x+y=15,x+3y=27,x+2y=18,x,O,y,作出一组平行直线 z=x+y,当直线经过可行域上的点M时,z最小.,作出可行域如图所示:,2x+y=15x+3y=27x+2y=18xOy作出一组平行,由于 都不是整数,而此问题中的最优解中, 必须都是整数,所以点 不是最优解.,解方程组,得,由于 都不是整数,而此问题中的最优解解方程组得,使截距z最小的直线为 ,,经过的整点是B(3,9)和C(4,8),,它们是最优解.,答:要截得所需三种规格的钢板,且使所截两种钢板张数最小的方法有两种,第一种截法是第一种钢板3张,第二种钢板9张;第二种截法是截第一种钢板4张,第二种钢板8张;两种截法都最少要两种钢板12张.,使截距z最小的直线为 ,经过的整点是B(3,9,例3 一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4 t、硝酸盐18 t;生产1车皮乙种肥料需要的主要原料是磷酸盐1 t、硝酸盐15 t现在库存磷酸盐10 t、硝酸盐66 t,在此基础上生产这两种混合肥料.列出满足生产条件的数学关系式,并画出相应的平面区域若生产1车皮甲种肥料,产生的利润为10 000元;生产1车皮乙种肥料,产生的利润为5 000元.那么分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?,二、效益最佳问题,例3 一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料,解:设生产x车皮甲种肥料、y车皮乙种肥料,能够产生利润z万元,则目标函数为,分析:列表,4,18,1,15,甲种肥料,乙种肥料,磷酸盐(t),硝酸盐(t),总吨数,车皮数,利润(元),10 000,5 000,解:设生产x车皮甲种肥料、y车皮乙种肥料,能够产生利润z万元,作出可行域,,得到斜率为-2,在y轴上的截距为2z,随z变化的一族平行直线.,yxO12345246810作出可行域,得到斜率为-2,在y,答:生产甲、乙两种肥料各2车皮,能够产生最大利润,最大利润为3万元.,答:生产甲、乙两种肥料各2车皮,能够产生最大利润,最大利润为,例4 若二次函数 的图象过原点,且 求 的范围.,探究点2 利用简单线性规划求变量的范围,例4 若二次函数 的图象过原点,且 探究点2,作出如图所示的可行域,,作出如图所示的可行域,,由图可知,,由图可知,,人教A版高二数学必修五第三章3,将求变量范围的问题巧妙地转化为简单的线性规划问题进行求解,减少了失误.,【提升总结】,将求变量范围的问题巧妙地转化为简单的线性规划问题进行,.,C,.C2.(真题湖南高考)若变量满足约束条件 , ABC,3.(真题北京高考)设D为不等式组,表示的平面区域,区域D上的点与,点(1,0)之间的距离的最小值为_.,3.(真题北京高考)设D为不等式组 表示的平面区域,区域D,4.某工厂生产甲、乙两种产品.已知生产甲种产品1 t需耗A种矿石10 t、B种矿石5 t、煤4 t;生产乙种产品1 t需耗A种矿石4 t、B种矿石4 t、煤9 t.每吨甲种产品的利润是600元,每吨乙种产品的利润是1 000元. 工厂在生产这两种产品的计划中要求消耗A种矿石不超过300 t、B种矿石不超过200 t、煤不超过363 t.甲、乙两种产品应各生产多少吨,能使利润总额达到最大?,4.某工厂生产甲、乙两种产品.已知生产甲种产品,将已知数据列成下表:,分析:,将已知数据列成下表:分析:A种矿石(t)B种矿石(t)煤(t,解:设生产甲、乙两种产品分别为x t、y t,利润总额为z元,则,作出如图所示的可行域,,解:设生产甲、乙两种产品分别为x t、y t,利润总额为z元,yxO1010,解方程组:,答:甲、乙两种产品应各生产12 t,35 t,能使利润总额达到最大,利润总额最大为42 200元.,得点,解方程组:答:甲、乙两种产品应各生产12 t,35 t,能使,1.设所求的未知数; 2.列出约束条件; 3.建立目标函数; 4.作出可行域; 5.运用图解法,求出最优解; 6.实际问题需要整数解时,适当调整,确定最优解.,一、利用简单的线性规划解决实际问题的一般步骤:,二、利用线性规划知识解决具有限制条件的函数不等式.,1.设所求的未知数; 2.列出约束条件; 3.建立目标,

    注意事项

    本文(人教A版高二数学必修五第三章332第2课时简单线性规划的应用(共33张)课件.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开