欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    GPS全球定位系统原理与应用ppt课件.ppt

    • 资源ID:1946824       资源大小:2.86MB        全文页数:92页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    GPS全球定位系统原理与应用ppt课件.ppt

    GPS全球定位系统原理与应用,华东师范大学地理信息科学教育部重点实验室二00五年,Slide 2,课程主要内容,了解GPS技术的发展与现状 GPS技术的发展、GPS系统的建立、GPS系统的 组成熟悉GPS的基础概念 坐标系统、时间系统、GPS卫星星历、导航电文和卫星信号、GPS接收机的类型与工作原理掌握GPS导航与定位的原理 伪距测量、载波相位测量、绝对定位和相对定位、SA和AS政策、导航原理与方法熟悉GPS技术的作用和应用领域 GPS在日常生活、生产应用、科学研究中的作用和应用领域,Slide 3,授课方式与时间安排,以课堂讲解为主,课后自学为辅主要讲解原理,不注重公式推导下一次课程时间 9月22日下午1:30 3:30考核形式:平时作业(两次)、课后考试,Slide 4,主要参考资料,GPS测量原理与应用 徐绍诠 武汉大学出版社全球定位系统原理及其应用 刘基余 测绘出版社GPS卫星测量原理与应用 周忠谟 测绘出版社,Slide 5,第一部分 GPS技术及其发展,GPSGlobal Positioning System定义:GPS是美国研制的新一代卫星导航定位系统,可向全球用户提供连续、实时、高精度的三维位置,三维速度和时间信息。,Slide 6,卫星定位技术发展的回顾,1957年世界上第一颗人造地球卫星发射成功,40年来,人造地球卫星技术在通信、气象、资源勘察、导航、遥感、大地测量、地球动力学、天文学和军事科学等众多领域,得到了极广泛应用。,Slide 7,卫星定位技术发展的回顾,人造地球卫星的出现,首先引起了各国军事部门的高度重视。1958年底,美国海军武器实验室,开始着手建立为美国海军舰艇导航的卫星系统,即“海军导航卫星系统”(Navy Navigation Satellite SystemNNSS)。由于该系统卫星都通过地极,也称“子午(Transit)卫星系统”。1964年该系统建成,并在美国军方启用。1967年美国政府批准该系统解密,提供民用。该系统不受气象条件的限制,自动化程度高,具有良好的定位精度。,Slide 8,卫星定位技术发展的回顾,尽管NNSS在导航技术的发展中具有划时代的意义,但由于该系统卫星数目少(5-6颗),运行轨道低(1000km ),观测时间长(1.5小时),无法提供连续实时三维导航,同时获得一次导航解的时间长,难以满足军事要求,尤其是高动态目标(飞机、导弹等)导航要求。而从大地测量看,定位速度慢,一个测站一般平均观测1-2天;精度低,单点定位精度3-5m,相对定位精度1m,使得在大地测量和地球动力学研究方面的应用,也受到很大限制。,Slide 9,卫星定位技术发展的回顾,为满足军事和民用对连续实时和三维导航的迫切要求,1973年美国国防部开始组织陆海空三军,共同研究建立新一代卫星导航系统的计划,这就是目前所称的“导航卫星授时测距/全球定位系统”(Navigation Satellite Timing and ranging / Global Positioning System)简称全球定位系统(GPS)。为使GPS具有高精度连续实时三维导航和定位能力,以及良好的抗干扰性能,在设计上采取了若干改善措施。,Slide 10,GPS系统的特点,全球性连续覆盖,全天候工作定位精度高观测时间短测站间无需通视可提供三维坐标操作简便功能多,用途广,Slide 11,GPS定位系统的组成,GPS定位技术是利用高空中的GPS卫星,向地面发射L波段的载频无线电测距信号,由地面上用户接收机实时地连续接收,并计算出接收机天线所在的位置。因此,GPS定位系统是由以下三个部分组成:(1)GPS卫星星座(空间部分)(2)地面监控系统(地面控制部分)(3)GPS信号接收机(用户设备部分)。,Slide 12,这三部分有各自独立的功能和作用,对于整个全球定位系统来说,它们都是不可缺少的。,Slide 13,GPS卫星星座组成,共24颗卫星,其中3颗备用,分布在6个轨道面上。轨道面相对地球赤道面的倾角为550,各轨道平面升交点赤经相差600,相邻轨道上卫星的升交距角相差300。轨道平均高度约20200km,运行周期11h58m。因此,同一测站上每天出现卫星分布图形相同,只是每天提前约4分钟。每颗卫星每天约有5小时在地平线以上,同时位于地平线以上的卫星数目,随时间地点而异,最少4颗,最多达11颗。,Slide 14,GPS系统的空间部分由GPS卫星组成,称为卫星星座。卫星星座的分布设置要保证地球上任何地点,任何时刻至少可以同时观测到四颗卫星。,GPS卫星星座组成,Slide 15,铯原子钟计算机2块7m2的太阳能翼板无线电收发两用机导航荷载(接收数据,发射测距和导航数据)姿态控制和太阳能板指向系统,GPS卫星,Slide 16,GPS卫星结构,GPS卫星结构,Slide 17,GPS卫星迄今已设计了三代。第一代Block1型用于系统实验,称实验卫星,共研制和发射了11颗,设计寿命5年,现已停止工作。第二代Block2和2A型卫星称为工作卫星,共研制了28颗,设计寿命7.5年,从1989年初到1994年上半年发射完毕。第三代Block3和2R型卫星尚在设计中,预计20颗,以取代第二代卫星,改善全球定位系统。,GPS卫星星座组成,Slide 18,GPS星座参数,卫星:24 颗轨道:面6个长 半 轴:26609km偏 心 率:0.01轨道面相对赤道面的倾角:55各轨道面升交点赤经相差:60相邻轨道卫星升交距角相差:30卫星高度:20200km卫星运行周期:11小时58分钟,Slide 19,1 接收和存储由地面监控站发来的导航信息,接收并执行监控站的控制指令。2 利用卫星上的微处理机,对部分必要的数据进行处理。3 通过星载的原子钟提供精密的时间标准。4 向用户发送定位信息。5 在地面监控站的指令下,通过推进器调整卫星姿态和启用备用卫星。,GPS卫星的基本功能,Slide 20,GPS地面监控部分,GPS的地面监控部分由分布在全球的5个地面站组成,其中包括卫星监测站(5个)、主控站(1个)和注入站(3个)1、 监测站:是主控站直接控制下的数据自动采集中心。站内设有双频GPS接收机、高精度原子钟、计算机1台和若干台环境数据传感器。观测资料由计算机进行初步处理,存储并传输到主控站,以确定卫星轨道。卫星。,Slide 21,控制站的分布,夏威夷,卡瓦加兰,狄哥伽西亚,阿松森岛,科罗拉多,Slide 22,GPS地面监控部分,2、 主控站除协调和管理地面监控系统外,主要任务:1)根据本站和其它监测站的观测资料,推算编制各卫星的星历、卫星钟差和大气修正参数,并将数据传送到注入站。2)提供全球定位系统的时间基准。各监测站和GPS卫星的原子钟,均应与主控站的原子钟同步,测出其间的钟差,将钟差信息编入导航电文,送入注入站。3)调整偏离轨道的卫星,使之沿预定轨道运行。4)启用备用卫星代替失效工作卫星。,Slide 23,GPS地面监控部分,3、注入站:主要设备为1台直径3.6m的天线、1台c波段发射机和1台计算机。主要任务是在主控站的控制下,将主控站推算和编制的卫星星历、钟差、导航电文和其它控制指令等,注入到相应卫星的存储系统,并监测注入信息的正确性。整个GPS系统的地面监控部分,除主控站外均无人值守。各站间用现代化通讯网络联系,在原子钟和计算机的驱动和控制下,实现高度的自动化标准化。,Slide 24,地面监控系统流程图,Slide 25,GPS地面控制部分的作用,负责监控全球定位系统的工作:监测卫星是否正常工作,是否沿预定的轨道运行跟踪计算卫星的轨道参数并发送给卫星,由卫星通过导航电文发送给用户保持各颗卫星的时间同步必要时对卫星进行调度,Slide 26,GPS用户设备部分,用户部分组成GPS信号接收机及相关设备GPS接收机接收、跟踪、变换和测量GPS信号的无线电设备GPS接收机的组成 天线、接收机、处理器、控制显示单元、电源GPS接收机的作用 接收GPS卫星发射的无线电信号,以获得必要的定位信息和观测量,并经过数据处理而完成定位工作,Slide 27,GPS接收机,DSNPLEICAGARMIN,TRIMBLE ASHTECHJAVAD,Slide 28,GPS接收机,Slide 29,SPS与PPSSPS 标准定位服务,使用C/A码,民用PPS 精密定位服务,可使用P码,军用SA(已于2000年5月1日取消)Selective Availability 选择可用性:人为降低普通用户的测量精度。方法技术:轨道加绕(长周期,慢变化)技术:星钟加绕(高频抖动,短周期,快变化)AS Anti-Spoofing反电子欺骗 P码加密,P+W-Y,美国政府的GPS政策,Slide 30,实时单点定位的平面精度(m),Slide 31,非特许用户对美国限制性政策的措施,GLONASS 全球导航卫星系统Galileo系统北斗系统:我国的第一代卫星导航系统,Slide 32,1、GLONASS,类似于GPS,是俄罗斯以空间为基础的无线电导航系统;其前身CICADA与子午系统同期,于1965年设计,有12颗卫星;20世纪70年代中期开始启动GLONASS计划1982年10月12日发射第一颗GLONASS卫星1996年1月18日,完成24颗卫星的布局,卫星具备完全工作能力由于经济原因,现在天空上的GLONASS卫星仅为8颗。,Slide 33,GLONASS,Slide 34,GPS/GLONASS系统参数比较,Slide 35,2、Galileo,背景:GLONASS在轨卫星缺失,GPS独霸市场 GLONASS、GPS均由军方控制欧盟:要建立国际民间控制的或欧盟自己的民用导航系统特点:共享的独立于GPS的无增强条件下的适于海陆空的 系统。参股共建,收费。阶段:(一)2000年前,可行性评估或定义(二)20012005,开发和检测(三)20062007,部署(四)2008,商业运行,Slide 36,欧盟为何重视伽利略计划,首先,打破美国在这方面的垄断地位,为欧盟赢得可观的市场份额。 权威部门预计: 伽利略计划将为欧盟创造万个高技术含量的就业岗位;每年经济收益有亿欧元之多; 仅出售航空和航海终端设备一项就可在年至年将获得亿欧元收入第二,欧盟开发此项目可为欧盟现在极力提倡的欧洲共同安全防御政策服务。第三,欧盟认为,没有科技上的领先地位,欧盟在将来许多事务中就没有主导权。,Slide 37,Galileo计划的历程,历程:阿基米德-GEO-HEO-MEO-LEO-Galileo,主要面临的困难: 投资巨大:“伽利略系统”高达36亿欧元的造价 美国政府的极力反对:美国的干扰在一定程度上推迟了“伽利略”计划的通过各国的态度: 美国:美国说“伽利略”是个很坏的计划 法国:对美国的垄断感到不满 德国、荷兰、 英国:经济,Slide 38,Galileo计划概况,伽利略计划的资金预计为32亿到36亿欧元系统由30颗高轨道卫星组成,分布在轨道高度为2.4万千米、倾角为56度的3个轨道面上。基础设施包括天基和地基两部分。卫星将为用户提供精确的时间和误差不超过一米的全球精确定位服务,与美国GPS和俄罗斯的GLONASS争夺市场。,Slide 39,3、北斗系统,目的:快速定位、实时导航,简短通讯,精密授时 由两颗地球同步轨道卫星组成星座,卫星结构简单,Slide 40,定位工作主要在中心站完成,属于主动式导航定位系统二维导航和定位,高程结果需要由其他途径获得主要的优势在于军用:通讯、集团用户的调度和派遣,北斗系统定位的特点,Slide 41,集团用户解决方案,地面数据处理中心可以:利用北斗用户的实时运行轨迹和相关地图对动态用户进行导航和交通管制遥测北斗用户接收机的工作状态,报警用户收发机的故障,识别用户身份,控制用户使用响应并回复集团用户对下属用户的定位审查,Slide 42,第二部分 GPS基础概念,坐标系统时间系统GPS卫星星历导航电文和卫星信号GPS接收机的类型与工作原理,Slide 43,GPS坐标系统,在GPS定位中,通常采用两类坐标系统:一类是在空间固定的坐标系,该坐标系与地球自转无关,对描述卫星的运行位置和状态极其方便。另一类是与地球体相固联的坐标系统,该系统对表达地面观测站的位置和处理GPS观测数据尤为方便。,Slide 44,坐标系统是由坐标原点位置、坐标轴指向和尺度所定义的。在GPS定位中,坐标系原点一般取地球质心,而坐标轴的指向具有一定的选择性,为了使用上的方便,国际上都通过协议来确定某些全球性坐标系统的坐标轴指向,这种共同确认的坐标系称为协议坐标系。,GPS坐标系统,Slide 45,地球坐标系还有其它表示形式:(1)地球参心坐标系(2)天文坐标系(3)站心坐标系(4)高斯平面直角坐标系等,GPS坐标系统,Slide 46,GPS坐标系统,在全球定位系统中,为了确定用户接收机的位置,GPS卫星的瞬时位置通常应化算到统一的地球坐标系统。在GPS试验阶段,卫星瞬间位置的计算采用了1972年世界大地坐标系(World Geodetic System WGS-72),1987年1月10日开始采用改进的大地坐标系统WGS-84。世界大地坐标系WGS属于协议地球坐标系CTS,WGS可看成CTS的近似系统。,Slide 47,WGS-72与WGS-84的基本大地参数,GPS坐标系统,Slide 48,第二部分 GPS基础概念,坐标系统时间系统GPS卫星星历导航电文和卫星信号GPS接收机的类型与工作原理,Slide 49,GPS时间系统,在天文学和空间科学技术中,时间系统是精确描述天体和卫星运行位置及其相互关系的重要基准,也是利用卫星进行定位的重要基准。为精密导航和测量需要,全球定位系统建立了专用的时间系统,由GPS主控站的原子钟控制。GPS时属于原子时系统,秒长与原子时相同,但与国际原子时的原点不同,即GPST与IAT在任一瞬间均有一常量偏差。IAT-GPST = 19s,GPS时与协调时的时刻,规定在1980年1月6日0时一致,随着时间的积累,两者的差异将表现为秒的整数倍,Slide 50,GPS时间系统,在GPS卫星定位中,时间系统的重要性表现在: GPS卫星作为高空观测目标,位置不断变化,在给出卫星运行位置同时,必须给出相应的瞬间时刻。例如当要求GPS卫星的位置误差小于1cm,则相应的时刻误差应小于2.6 10-6s。 准确地测定观测站至卫星的距离,必须精密地测定信号的传播时间。若要距离误差小于1cm,则信号传播时间的测定误差应小于3 10-11s,Slide 51,第二部分 GPS基础概念,坐标系统时间系统GPS卫星星历导航电文和卫星信号GPS接收机的类型与工作原理,Slide 52,GPS卫星轨道,卫星轨道在GPS定位中的意义 卫星在空间运行的轨迹称为轨道,描述卫星轨道位置和状态的参数称为轨道参数。由于利用GPS进行导航和测量时,卫星作为位置已知的高空观测目标,在进行绝对定位时,卫星轨道误差将直接影响用户接收机位置的精度;而在相对定位时,尽管卫星轨道误差的影响将会减弱,但当基线较长或精度要求较高时,轨道误差影响不可忽略。此外,为了制订GPS测量的观测计划和便于捕获卫星发射的信号,也需要知道卫星的轨道参数。,Slide 53,GPS卫星星历,卫星星历是描述卫星运动轨道的信息,是一组对应某一时刻的轨道根数及其变率。根据卫星星历可以计算出任一时刻的卫星位置及其速度,GPS卫星星历分为预报星历和后处理星历。,Slide 54,卫星的预报星历是用跟踪站以往时间的观测资料推求的参考轨道参数为基础,并加入轨道摄动项改正而外推的星历。用户在观测时可以通过导航电文实时得到,对导航和实时定位十分重要。但对精密定位服务则难以满足精度要求。后处理星历是一些国家的某些部门根据各自建立的跟踪站所获得的精密观测资料,应用与确定预报星历相似的方法,计算的卫星星历。这种星历通常是在事后向用户提供的在用户观测时的卫星精密轨道信息,因此称后处理星历或精密星历。该星历的精度目前可达分米。,GPS卫星星历,Slide 55,预报星历是通过卫星发射的含有轨道信息的导航电文传递给用户,经解码获得所需的卫星星历,也称广播星历,包括相对某一参考历元的开普勒轨道参数和必要的轨道摄动项改正参数。由于预报星历每小时更新一次,在数据更新前后,各表达式之间将会产生小的跳跃,其值可达数分米,一般可利用适当的拟合技术(如切比雪夫多项式)予以平滑。 GPS用户通过卫星广播星历可以获得的有关卫星星历参数共16个。,GPS卫星星历,Slide 56,后处理星历一般不通过卫星的无线电信号向用户传递,而是通过磁盘、电视、电传、卫星通讯等方式有偿地为所需要的用户服务。建立和维持一个独立的跟踪系统来精密测定GPS卫星的轨道,技术复杂,投资大,因此,利用GPS预报星历进行精密定位工作仍是目前一个重要的研究和开发领域。,GPS卫星星历,Slide 57,第二部分 GPS基础概念,坐标系统时间系统GPS卫星星历导航电文和卫星信号GPS接收机的类型与工作原理,Slide 58,关于GPS卫星信号GPS卫星所发射的信号包括载波信号、P码(或Y码)、C/A码和数据码(或D码)等多种信号分量,而其中P码和C/A码统称为测距码。GPS卫星信号的产生、构成和复制等,都涉及到现代数字通信理论和技术方面的复杂问题,GPS的用户,一般可以不去深入研究,但了解其基本概念,对理解GPS定位的原理仍是有必要的。,GPS卫星信号,Slide 59,GPS卫星信号的产生与构成主要考虑了如下因素;(1)适应多用户系统要求。(2)满足实时定位要求。(3)满足高精度定位需要。(4)满足军事保密要求。,GPS卫星信号,Slide 60,码的概念在现代数字通信中,广泛使用二进制数(0和1)及其组合,来表示各种信息。表达不同信息的二进制数及其组合,称为码。一位二进制数叫一个码元或一比特。比特为码和信息量的度量单位。如果将各种信息例如声音、图象和文字等通过量化,并按某种预定规则,表示成二进制数的组合形式,则这一过程称为编码。在二进制数字化信息的传输中,每秒传输的比特数称为数码率,表示数字化信息的传输速度,单位为bit/s。,GPS卫星信号的测距码,Slide 61,随机噪声码,既然码是用以表达各种信息的二进制数的组合,是一组二进制的数码序列,则这一序列就可以表达成以0和1为幅度的时间函数。假设一组码序列u(t),对某一时刻来说,码元是0或1完全是随机的,但出现的概率均为1/2。这种码元幅度的取值完全无规律的码序列,称为随机码序列(或随机噪声码序列)。它是一种非周期性序列,无法复制,但其自相关性好。而相关性的好坏,对提高利用GPS卫星码信号测距精度,极其重要。,Slide 62,伪随机噪声码,尽管随机码具有良好的自相关性,但却是一种非周期序列,不服从任何编码规则,实际中无法复制和利用。GPS采用了一种伪随机噪声码(Pseudo Random NoicePRN)简称伪随机码或伪码。它的特点是:具有随机码的良好自相关性,又具有某种确定的编码规则,是周期性的,容易复制。,Slide 63,GPS卫星所采用的两种测距码,即C/A码和P码(或Y码),均属于伪随机码。,测距码,Slide 64,C/A码,C/A码:是用于粗测距和捕获GPS卫星信号的伪随机码。它是由两个10级反馈移位寄存器组合而产生。C/A码的码长短,共1023个码元,若以每秒50码元的速度搜索,只需20.5s,易于捕获,所以C/A码通常也称捕获码。C/A码的码元宽度大,假设两序列的码元对齐误差为为码元宽度的1/101/100,则相应的测距误差为29.32.93m。由于精度低,又称粗码。现代科学技术的发展,使得测距分辨率大大提高。一般最简单的导航接收机的伪距测量分辨率达到0.1米。,Slide 65,P码,P码是卫星的精测码,码率为10.23MHZ,产生的原理与C/A码相似,但更复杂。发生电路采用的是两组各由12级反馈移位寄存器构成。P码的周期长,267天重复一次。P码的捕获一般是先捕获C/A码,再根据导航电文信息,捕获P码。由于P码的码元宽度为C/A码的1/10,若取码元对齐精度仍为码元宽度的1/100,则相应的距离误差为0.29m,仅为C/A码的1/10,故P码称为精码。根据美国国防部规定,P码是专为军用的。目前只有极少数高档次测地型接收机才能接收P码,而且美国国防部的AS政策更是绝对禁止了非特许用户应用。,Slide 66,GPS卫星的导航电文,是用户用来定位和导航的数据基础。导航电文包含有关卫星的星历、卫星工作状态、时间系统、卫星钟运行状态、轨道摄动改正、大气折射改正和由C/A码捕获P码等导航信息。导航电文又称为数据码(或D码)。导航电文也是二进制码,依规定格式组成,按帧向外播送。每帧电文含有1500比特,播送速度50bit/s,每帧播送时间30s。,GPS卫星导航电文,Slide 67,每帧导航电文含5个子帧,每个子帧分别含有10个字,每个字30比特,故每个子帧共300比特,播发时间6s。为记载多达25颗卫星,子帧4、5各含有25页。子帧1、2、3和子帧4、5的每一页构成一个主帧。主帧中1、2、3的内容每小时更新一次,4、5的内容仅当给卫星注入新的导航电文后才得以更新。,GPS卫星导航电文,Slide 68,导航电文的格式:,1,2,3,4,5,30s,6s,0.02s,0.6s,子帧4、5各含25页,一个子帧,一个字码,一个主帧,一个页面,Slide 69,一帧导航电文的内容,子帧 1,一个子帧6s长,10个字,每字30比特,1帧30s1500比特,子帧 3,子帧 4,子帧 5,子帧 2,Slide 70,导航电文内容,1、遥测码(TLWTelemetry WORD)位于个子帧的开头,作为捕获导航电文的前导。遥测码的第18比特是同步码,使用户便于解释导航电文;第922比特为遥测电文,其中包括地面监测系统注入数据时的状态信息、诊断信息和其它信息。第23和第24比特是连接码;第2530比特为奇偶校验码,它用于发现和纠正错误。,Slide 71,导航电文内容,2、转换码(HOWHand Over Word) 紧接各子帧的遥测码,主要向用户提供用于捕获P码的Z记数。所谓Z记数是从星期日零时只能星期六24时,P码字码X1的周期(1.5秒)的重复数。因此,当知道了Z计数,便能较快地捕获到P码。,Slide 72,导航电文内容,3、第一数据块 第一数据块位于第1子帧的第310字码,它的主要内容包括: a、时延差改正Tgd就是载波L1、L2的电离层 时延差。 b 、数据龄期AODC是时钟改正数的外推时间间隔,它指明卫星时钟改正数的置信度。 C、 星期序号WN表示从1980年1月6日子夜零点(UTC)起算的星期数,即GPS星期数。 d 、卫星时钟改正GPS时间和UTC时间之间存在的差值。,Slide 73,导航电文内容,4、第二数据块 第二数据块包括第2和第3子帧,其内容表示GPS卫星的星历,描述卫星的运行及其轨道的参数,包括下列三类: a、开普勒六参数。 b 、轨道摄动九参数。 C、 时间二参数有关卫星运行及其轨道的参数内容,具体可参见卫星大地测量有关参考书。,Slide 74,导航电文内容,5、第三数据块 第三数据块包括第4和第5子帧,其内容包括了所有GPS卫星的历书数据。当接收机捕获到某颗GPS卫星后,根据第三数据块提供的其他卫星的概略星历、时钟改正、卫星改正、卫星工作状态等数据,用户可以选择工作正常和位置适当的卫星,并且较快地捕获到所选择地卫星。,Slide 75,GPS卫星信号包含三种信号分量:载波、测距码和数据码。信号分量的产生都是在同一个基本频率f0=10.23MHz的控制下产生,GPS卫星信号示意图如下,GPS卫星信号的载波和调制,基本频率10.23MHz,L1载波1575.42MHz,L2载波1227.60MHz,C/A码1.023MHz,P码10.23MHz,P码10.23MHz,数据码50BPS,数据码50BPS,154,120,10,204600,Slide 76,卫星取L波段的两种不同电磁波频率为载波:L1载波频率为1575.42MHz,波长为19.03cm; L2载波频率为1227.60MHz,波长为24.42cm。在L1载波上,调制有C/A码、P码(或Y码)和数据码; L2载波上,只调制有P码(或Y码)和数据码。,GPS卫星信号的载波和调制,Slide 77,在无线电通信中,为有效地传播信息,一般将频率较低的信号加载到频率较高的载波上,此时频率较低的信号称为调制信号。GPS卫星的测距码和数据码是采用调相技术调制到载波上,且调制码的幅值只取0或1。如果码值取0,则对应的码状态取+1;而码值取1时,对应码状态为-1,载波和相应的码状态相乘后,即实现了载波的调制。,GPS卫星信号的载波和调制,Slide 78,GPS卫星信号的解调,为进行载波相位测量,当用户接收到卫星发播的信号后,可通过以下两种解调技术来恢复载波相位。(1)复制码与卫星信号相乘:由于调制码的码值是用1的码状态来表示的,当把接收的卫星码信号与用户接收机产生的复制码(结构与卫星测距码信号完全相同的测距码),在两码同步的条件下相乘,即可去掉卫星信号中的测距码而恢复原来的载波。但此时恢复的载波尚含有数据码即导航电文。这种解调技术的条件是必须掌握测距码的结构,以便产生复制码。,Slide 79,GPS卫星信号的解调,(2)平方解调技术:将接收到的卫星信号进行平方,由于处于+1状态的调制码经过平方后均为+1,而+1对载波相位不产生影响。故卫星信号平方后,可达到解调目的。采用这种方法,可不必知道调制码的结构,但平方解调后,不仅去掉了卫星信号中的测距码,而且也同时去掉了导航电文。,Slide 80,第二部分 GPS基础概念,坐标系统时间系统GPS卫星星历导航电文和卫星信号GPS接收机的类型与工作原理,Slide 81,GPS接收机,GPS接收机的基本概念GPS用户设备主要包括GPS接收机及其天线、微处理机及其终端设备以及电源等。其中接收机和天线是核心部分,习惯上统称为GPS接收机。主要功能是接收GPS卫星发射的信号,并进行处理,获取导航电文和必要的观测量。,Slide 82,GPS接收机的结构如图所示,Slide 83,GPS接收机,GPS接收机的主要结构组成:天线(带前置放大器)信号处理器:用于信号识别与处理微处理器:用于接收机的控制、数据采集和导航计算用户信息传输:包括操作板、显示板等精密震荡器:产生标准频率电源,Slide 84,GPS接收机类型,(1)按工作原理划分:码相关型接收机:能够产生与所测卫星测距码结构完全相同的复制码。利用的是C/A码或P码,条件是掌握测距码结构,也称有码接收机。平方型接收机:利用载波信号的平方技术去掉调制码,获得载波相位测量所必需的载波信号。该机只利用卫星信号,无需解码,不必掌握测距码结构,称无码接收机。混合型接收机:综合利用了码相关技术和平方技术的优点,同时获得码相位和精密载波相位观测量。目前广泛使用。,Slide 85,GPS接收机类型,(2)根据接收机信号通道类型划分:多通道接收机:具有多个卫星信号通道,每个通道只连续跟踪一个卫星信号。也称连续跟踪型接收机。序贯通道接收机:只有1-2个信号通道,为了跟踪多个卫星,在相应软件控制下按时序依次对各卫星信号进行跟踪量测。依次量测一个循环所需时间较长(大于20ms),对卫星信号的跟踪是不连续的。多路复用通道接收机:与序贯通道接收机相似,也只有1-2个信号通道,在相应软件控制下按时序依次对各卫星信号进行跟踪量测。依次量测一个循环所需时间较短(小于20ms),可保持对卫星信号的连续跟踪。,Slide 86,GPS接收机类型,(3)根据所接收的卫星信号频率划分:单频接收机(L1):只接收调制的L1信号,虽然可利用导航电文提供的参数,对观测量进行电离层影响修正,但由于修正模型尚不完善,精度较差,主要用于小于20km的短基线精密定位。双频接收机(L1+L2):同时接受L1、L2两种信号,利用双频技术,可消除或减弱电离层折射对观测量的影响,定位精度较高。这种分法较为常见。,Slide 87,GPS接收机类型,(4)按接收机用途划分:导航型:用于确定船舶、车辆、飞机等运载体的实时位置和速度,保障按预定路线航行或选择最佳路线。采用测码伪距为观测量的单点实时定位或差分GPS定位,精度低,结构简单,价格便宜,应用广泛。测量型接收机:采用载波相位观测量进行相对定位,精度高。观测数据可测后处理或实时处理(RTK),需配备功能完善的数据处理软件。与导航型相比,结构复杂,价格昂贵。授时型接收机:主要用于天文台或地面监控站,进行时频同步测定。,Slide 88,GPS接收机天线,天线的基本作用是把来自于卫星信号的能量转化为相应的电流,并经前置放大器进行频率变换,以便对信号进行跟踪、处理和量测。,Slide 89,GPS接收机天线,天线的基本要求:天线与前置放大器应密封为一体,保障在恶劣气象环境下正常工作。天线应呈全圆极化:要求天线的作用范围为整个上半球,天顶处不产生死角,保障能接收来自天空任何方向的卫星信号。天线必须采取适当的防护与屏蔽措施:例如加一块基板,尽可能地减弱信号的多路径效应,防止信号干扰。天线的相位中心与其几何中心的偏差应尽量小,且保持稳定。,Slide 90,GPS接收机天线基本类型,Slide 91,几种测量型双频GPS接收机的主要参数,Slide 92,GPS接收机工作原理,当GPS卫星在用户视界升起时,接收机能够捕获到按一定卫星高度截止角所选择的待测卫星,并能够跟踪这些卫星的运行;对所接收到的GPS信号,具有变换、放大和处理的功能,以便测量出GPS信号从卫星到接收天线的传播时间,解译出GPS卫星所发送的导航电文,实时地计算出测站的三维位置,甚至三维速度和时间。GPS信号接收机不仅需要功能较强的机内软件,而且需要一个多功能的GPS数据测后处理软件包。接收机加处理软件包,才是完整的GPS信号用户设备。,

    注意事项

    本文(GPS全球定位系统原理与应用ppt课件.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开