大学高等数学5隐函数 微分及习题课课件.ppt
,第四节,一、隐函数的导数,二、由参数方程确定的函数的导数,三、相关变化率,机动 目录 上页 下页 返回 结束,隐函数和参数方程求导,相关变化率,第二章,一、隐函数的导数,若由方程,可确定 y 是 x 的函数 ,由,表示的函数 , 称为显函数 .,例如,可确定显函数,可确定 y 是 x 的函数 ,但此隐函数不能显化 .,函数为隐函数 .,则称此,隐函数求导方法:,两边对 x 求导,(含导数 的方程),机动 目录 上页 下页 返回 结束,例1. 求由方程,在 x = 0 处的导数,解: 方程两边对 x 求导,得,因 x = 0 时 y = 0 , 故,确定的隐函数,机动 目录 上页 下页 返回 结束,例2. 求椭圆,在点,处的切线方程.,解: 椭圆方程两边对 x 求导,故切线方程为,即,机动 目录 上页 下页 返回 结束,例3. 求,的导数 .,解: 两边取对数 , 化为隐式,两边对 x 求导,机动 目录 上页 下页 返回 结束,1) 对幂指函数,可用对数求导法求导 :,说明:,注意:,机动 目录 上页 下页 返回 结束,2) 有些显函数用对数求导法求导很方便 .,例如,两边取对数,两边对 x 求导,机动 目录 上页 下页 返回 结束,又如,对 x 求导,两边取对数,机动 目录 上页 下页 返回 结束,二、由参数方程确定的函数的导数,若参数方程,可确定一个 y 与 x 之间的函数,可导, 且,则,时, 有,时, 有,(此时看成 x 是 y 的函数 ),关系,机动 目录 上页 下页 返回 结束,若上述参数方程中,二阶可导,且,则由它确定的函数,可求二阶导数 .,利用新的参数方程,可得,机动 目录 上页 下页 返回 结束,?,例4. 设, 且,求,已知,解:,练习: P111 题8(1),解:,注意 :,机动 目录 上页 下页 返回 结束,例5. 抛射体运动轨迹的参数方程为,求抛射体在时刻 t 的运动速度的大小和方向.,解: 先求速度大小:,速度的水平分量为,垂直分量为,故抛射体速度大小,再求速度方向,(即轨迹的切线方向):,设 为切线倾角,则,机动 目录 上页 下页 返回 结束,抛射体轨迹的参数方程,速度的水平分量,垂直分量,在刚射出 (即 t = 0 )时, 倾角为,达到最高点的时刻,高度,落地时刻,抛射最远距离,速度的方向,机动 目录 上页 下页 返回 结束,例6. 设由方程,确定函数,求,解: 方程组两边对 t 求导 , 得,故,机动 目录 上页 下页 返回 结束,三、相关变化率,为两可导函数,之间有联系,之间也有联系,称为相关变化率,相关变化率问题解法:,找出相关变量的关系式,对 t 求导,得相关变化率之间的关系式,求出未知的相关变化率,机动 目录 上页 下页 返回 结束,例7. 一气球从离开观察员500 m 处离地面铅直上升,其速率为,当气球高度为 500 m 时, 观察员,视线的仰角增加率是多少?,解: 设气球上升 t 分后其高度为h , 仰角为 ,则,两边对 t 求导,已知,h = 500m 时,机动 目录 上页 下页 返回 结束,思考题: 当气球升至500 m 时停住 , 有一观测者以,100 mmin 的速率向气球出发点走来,当距离为500 m,时, 仰角的增加率是多少 ?,提示:,对 t 求导,已知,求,机动 目录 上页 下页 返回 结束,试求当容器内水,例8. 有一底半径为 R cm , 高为 h cm 的圆锥容器 ,今以 自顶部向容器内注水 ,位等于锥高的一半时水面上升的速度.,解: 设时刻 t 容器内水面高度为 x ,水的,两边对 t 求导,而,故,体积为 V , 则,机动 目录 上页 下页 返回 结束,内容小结,1. 隐函数求导法则,直接对方程两边求导,2. 对数求导法 :,适用于幂指函数及某些用连乘,连除表示的函数,3. 参数方程求导法,极坐标方程求导,4. 相关变化率问题,列出依赖于 t 的相关变量关系式,对 t 求导,相关变化率之间的关系式,转化,求高阶导数时,从低到高每次都用参数方程求导公式,机动 目录 上页 下页 返回 结束,思考与练习,1. 求螺线,在对应于,的点处的切线方程.,解: 化为参数方程,当,时对应点,斜率, 切线方程为,机动 目录 上页 下页 返回 结束,2. 设,求,提示: 分别用对数微分法求,答案:,机动 目录 上页 下页 返回 结束,3. 设,由方程,确定 ,解:,方程两边对 x 求导,得,再求导, 得,当,时,故由 得,再代入 得,求,机动 目录 上页 下页 返回 结束,作业,P110 1(1) , (4) ; 2 ; 3 (3) , (4) ; 4 (2) , (4); 5 (2) ; 6 ; 7 (2) ; 8 (2) ,(4) ; 9 (2) ; 10 ; 12,第五节 目录 上页 下页 返回 结束,求其反函数的导数 .,解:,方法1,方法2,等式两边同时对 求导,备用题,1. 设,机动 目录 上页 下页 返回 结束, 求,解:,2. 设,方程组两边同时对 t 求导, 得,机动 目录 上页 下页 返回 结束,二、微分运算法则,三、微分在近似计算中的应用,四、微分在估计误差中的应用,第五节,一、微分的概念,机动 目录 上页 下页 返回 结束,函数的微分,第二章,一、微分的概念,引例: 一块正方形金属薄片受温度变化的影响,问此薄片面积改变了多少?,设薄片边长为 x , 面积为 A , 则,面积的增量为,关于x 的线性主部,故,当 x 在,取,变到,边长由,其,机动 目录 上页 下页 返回 结束,的微分,定义: 若函数,在点 的增量可表示为,( A 为不依赖于x 的常数),则称函数,而 称为,记作,即,定理: 函数,在点 可微的充要条件是,即,在点,可微,机动 目录 上页 下页 返回 结束,定理 : 函数,证: “必要性”,已知,在点 可微 ,则,故,在点 的可导,且,在点 可微的充要条件是,在点 处可导,且,即,机动 目录 上页 下页 返回 结束,定理 : 函数,在点 可微的充要条件是,在点 处可导,且,即,“充分性”,已知,即,在点 的可导,则,机动 目录 上页 下页 返回 结束,说明:,时 ,所以,时,很小时, 有近似公式,与,是等价无穷小,当,故当,机动 目录 上页 下页 返回 结束,微分的几何意义,当 很小时,则有,从而,导数也叫作微商,切线纵坐标的增量,自变量的微分,记作,记,机动 目录 上页 下页 返回 结束,例如,基本初等函数的微分公式 (见 P115表),又如,机动 目录 上页 下页 返回 结束,二、 微分运算法则,设 u(x) , v(x) 均可微 , 则,(C 为常数),分别可微 ,的微分为,微分形式不变,5. 复合函数的微分,则复合函数,机动 目录 上页 下页 返回 结束,例1.,求,解:,机动 目录 上页 下页 返回 结束,例2. 设,求,解: 利用一阶微分形式不变性 , 有,例3. 在下列括号中填入适当的函数使等式成立:,说明: 上述微分的反问题是不定积分要研究的内容.,注意 目录 上页 下页 返回 结束,注意: 数学中的反问题往往出现多值性.,数学中的反问题往往出现多值性 , 例如,注意 目录 上页 下页 返回 结束,三、 微分在近似计算中的应用,当,很小时,使用原则:,得近似等式:,机动 目录 上页 下页 返回 结束,特别当,很小时,常用近似公式:,很小),证明:,令,得,机动 目录 上页 下页 返回 结束,的近似值 .,解: 设,取,则,例4. 求,机动 目录 上页 下页 返回 结束,的近似值 .,解:,例5. 计算,机动 目录 上页 下页 返回 结束,例6. 有一批半径为1cm 的球 ,为了提高球面的光洁度,解: 已知球体体积为,镀铜体积为 V 在,时体积的增量,因此每只球需用铜约为,( g ),用铜多少克 .,估计一下, 每只球需,要镀上一层铜 ,厚度定为 0.01cm ,机动 目录 上页 下页 返回 结束,四、 微分在估计误差中的应用,某量的精确值为 A ,其近似值为 a ,称为a 的绝对误差,称为a 的相对误差,若,称为测量 A 的绝对误差限,称为测量 A 的相对误差限,机动 目录 上页 下页 返回 结束,误差传递公式 :,已知测量误差限为,按公式,计算 y 值时的误差,故 y 的绝对误差限约为,相对误差限约为,若直接测量某量得 x ,机动 目录 上页 下页 返回 结束,例7. 设测得圆钢截面的直径,测量D 的,绝对误差限,欲利用公式,圆钢截面积 ,解:,计算 A 的绝对误差限约为,A 的相对误差限约为,试估计面积的误差 .,计算,机动 目录 上页 下页 返回 结束,(mm),内容小结,1. 微分概念,微分的定义及几何意义,可导,可微,2. 微分运算法则,微分形式不变性 :,( u 是自变量或中间变量 ),3. 微分的应用,近似计算,估计误差,机动 目录 上页 下页 返回 结束,思考与练习,1. 设函数,的图形如下, 试在图中标出的点,处的,及,并说明其正负 .,机动 目录 上页 下页 返回 结束,2.,机动 目录 上页 下页 返回 结束,5. 设,由方程,确定,解:,方程两边求微分,得,当,时,由上式得,求,则,机动 目录 上页 下页 返回 结束,作业,P122 1 ; 3 (4) , (7) , (8) , (9) , (10) ; 4 ; 5; 8(1) ; 9(2) ; 12,习题课 目录 上页 下页 返回 结束,1. 已知,求,解:因为,所以,备用题,机动 目录 上页 下页 返回 结束,方程两边求微分, 得,已知,求,解:,2.,习题课 目录 上页 下页 返回 结束,习题课,一、 导数和微分的概念及应用,机动 目录 上页 下页 返回 结束,二、 导数和微分的求法,导数与微分,第二章,一、 导数和微分的概念及应用,导数 :,当,时,为右导数,当,时,为左导数,微分 :,机动 目录 上页 下页 返回 结束,关系 :,可导,可微,( 思考 P124 题1 ),应用 :,(1) 利用导数定义解决的问题,(3)微分在近似计算与误差估计中的应用,(2)用导数定义求极限,1) 推出三个最基本的导数公式及求导法则,其他求导公式都可由它们及求导法则推出;,2) 求分段函数在分界点处的导数 ,及某些特殊,函数在特殊点处的导数;,3) 由导数定义证明一些命题.,机动 目录 上页 下页 返回 结束,例1.设,存在,求,解:,原式=,机动 目录 上页 下页 返回 结束,例2.,若,且,存在 , 求,解:,原式 =,且,联想到凑导数的定义式,机动 目录 上页 下页 返回 结束,例3.设,在,处连续,且,求,解:,思考 : P124 题2,机动 目录 上页 下页 返回 结束,例4.设,试确定常数 a , b 使 f (x) 处处可导,并求,解:,得,即,机动 目录 上页 下页 返回 结束,是否为连续函数 ?,判别:,机动 目录 上页 下页 返回 结束,设,解:,又,例5.,处的连续性及可导性.,机动 目录 上页 下页 返回 结束,二、 导数和微分的求法,1. 正确使用导数及微分公式和法则,2. 熟练掌握求导方法和技巧,(1) 求分段函数的导数,注意讨论界点处左右导数是否存在和相等,(2) 隐函数求导法,对数微分法,(3) 参数方程求导法,极坐标方程求导,(4) 复合函数求导法,(可利用微分形式不变性),(5) 高阶导数的求法,逐次求导归纳 ;,间接求导法;,利用莱布尼兹公式.,机动 目录 上页 下页 返回 结束,例6.设,其中,可微 ,解:,机动 目录 上页 下页 返回 结束,例7.,且,存在, 问怎样,选择,可使下述函数在,处有二阶导数.,解: 由题设,存在, 因此,1) 利用,在,连续, 即,得,2) 利用,而,得,机动 目录 上页 下页 返回 结束,3) 利用,而,得,机动 目录 上页 下页 返回 结束,例8.设由方程,确定函数,求,解:方程组两边对 t 求导,得,故,机动 目录 上页 下页 返回 结束,机动 目录 上页 下页 返回 结束,作业,P124 4 ; 5(1) ; 6 ; 7 (3) , (4) , (5) ; 8 (2) ; 10 ; 11 (2) ; 12 ; 13 ; 15,机动 目录 上页 下页 返回 结束,