欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    数学形态学原理ppt课件.ppt

    • 资源ID:1918765       资源大小:4.70MB        全文页数:78页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    数学形态学原理ppt课件.ppt

    第6章 数学形态学及其应用,6.1 数学形态学概述 6.2 二值形态学6.3 灰值形态学 6.4 形态学的应用 6.5 形态学滤波及骨架抽取的MATLAB实现,6.1 数学形态学概述,6.1.1 数学形态学 数学形态学是法国和德国的科学家在研究岩石结构时建立的一门学科(1664)。 形态学的用途是获取物体拓扑和结构信息,它通过物体和结构元素相互作用的某些运算,得到物体更本质的形态。 在图象处理中的应用主要是:(1)利用形态学的基本运算,对图象进行观察和处理,从而达到改善图象质量的目的;(2)描述和定义图象的各种几何参数和特征,如面积、周长、连通度、颗粒度、骨架和方向性等。,数学形态学的数学基础和所用语言是集合论,因此它具有完备的数学基础,这为形态学用于图像分析和处理、形态滤波器的特性分析和系统设计奠定了坚实的基础。 数学形态学的应用可以简化图像数据,保持它们基本的形状特性,并除去不相干的结构。 数学形态学方法利用一个称作结构元素的“探针”收集图像的信息,当探针在图像中不断移动时, 便可考察图像各个部分之间的相互关系,从而了解图像的结构特征。,迄今为止, 还没有一种方法能像数学形态学那样既有坚实的理论基础,简洁、 朴素、 统一的基本思想,又有如此广泛的实用价值。有人称数学形态学在理论上是严谨的,在基本观念上却是简单和优美的。 数学形态学是一门建立在严格数学理论基础上的学科,其基本思想和方法对图像处理的理论和技术产生了重大影响。已经构成一种新的图像处理方法和理论,成为计算机数字图像处理的一个重要研究领域.,6.1.2 基本符号和定义,1. 集合论概念 在数字图像处理的数学形态学运算中,把一幅图像称为一个集合。 对于一幅图像A,如果点a在A的区域以内, 那么就说a是A的元素,记为aA,否则,记作aA.,2. B包含于A,设有两幅图象B,A。对于B中所有的元素ai,都有aiA,则称B包含于A,记作,c,D,3. 交集和并集 两个图像集合A和B的公共点组成的集合称为两个集合的交集, 记为AB,即AB=aaA且aB。 两个集合A和B的所有元素组成的集合称为两个集合的并集,记为AB,即AB=aaA或aB。,4. 补集 设有一幅图象X,所有X区域以外的点构成的集合称为X的补集,记作Xc,显然,如果BX=,则B在X的补集内。,B,2. 击中与击不中 设有两幅图象B,A。若存在这样一个点,它即是B的元素,又是A的元素, AB 则称B击中A,记作BA,,击不中 设有两幅图象B,A。若不存在任何一个点,它即是B的元素,又是A的元素,即B和A的交集是空,则称B不击中A,记作BA=,3平移和对称集平移 设A是一幅数字图像,b是一个点,那么定义A被b平移后的结果为Abab| aA,即取出A中的每个点a的坐标值,将其与点b的坐标值相加,得到一个新的点的坐标值a+b,所有这些新点所构成的图像就是A被b平移的结果,记为A+b,,对称集 设有一幅图象B,将B中所有元素的坐标取反,即令(x,y)变成(-x,-y),所有这些点构成的新的集合称为B的对称集,记作Bv。,4. 结构元素 设有两幅图象B,A。若A是被处理的对象,而B是用来处理A的,则称B为结构元素,又被形象地称做刷子。结构元素通常都是一些比较小的图象,6.2 二值形态学,二值形态学中的运算对象是集合。设A为图像集合,S为结构元素,数学形态学运算是用S对A进行操作。 实际上结构元素本身也是一个图像集合。对每个结构元素可以指定一个原点,它是结构元素参与形态学运算的参考点。应注意, 原点可以包含在结构元素中,也可以不包含在结构元素中,但运算的结果常不相同。,S,O,6.2.1 腐蚀 对一个给定的目标图像X和一个结构元素S, 想象一下将S在图像上移动。在每一个当前位置x, S+x只有三种可能的状态: (1) S+xX; (2) S+xXC; (3) S+xX与S+xXC均不为空。, 腐蚀是最基本的一种数学形态学运算。 腐蚀也可以用集合的方式定义,即 X用S腐蚀的结果是所有使S平移x后仍在X中的x的集合。换句话说,用S来腐蚀X得到的集合是S完全包括在X中时S的原点位置的集合。,对于任意一个在阴影部分的点a,Ba 包含于X,所以X被B腐蚀的结果就是那个阴影部分。阴影部分在X的范围之内,且比X小,就象X被剥掉了一层似的,这就是为什么叫腐蚀的原因 腐蚀在数学形态学运算中的作用是消除物体边界点。,6.2.2 膨胀 膨胀可以看做是腐蚀的对偶运算,其定义是:把结构元素B平移a后得到Ba,若Ba击中X,我们记下这个a点。所有满足上述条件的a点组成的集合称做X被B膨胀的结果。,腐蚀可以看作是将图像X中每一与结构元素S全等的子集S+x收缩为点x。反之,也可以将X中的每一个点x扩大为S+x,这就是膨胀运算,记为X S。若用集合语言,它的定义为X S = x| S+xx ,图中X是被处理的对象,B是结构元素,对于任意一个在阴影部分的点a,Ba击中X,所以X被B膨胀的结果就是那个阴影部分。阴影部分包括X的所有范围,就象X膨胀了一圈似的,这就是为什么叫膨胀的原因。,图 腐蚀与膨胀示意图,6.2.4 开运算与闭运算开运算 先腐蚀后膨胀称为开,对图像X及结构元素S,用符号XS表示S对图像X作开运算,开运算去掉了凸角(a) 结构元素S1和S2;(b) XS1;(c) XS2,结论:我们可以得到关于开运算的几点结论:()开运算能够除去孤立的小点,毛刺和小桥,而总的位置和形状不便。()开运算是一个基于几何运算的滤波器。()结构元素大小的不同将导致滤波效果的不同。()不同的结构元素的选择导致了不同的分割,即提取出不同的特征。,6.2.5 闭,先膨胀后腐蚀称为闭,对图像X及结构元素S,用符号X S表示S对图像X作闭运算,一般来说,闭运算能够填平小湖(即小孔),弥合小裂缝,而总的位置和形状不变。这就是闭运算的作用。,闭运算填充了凹角(a) 结构元素S1和S2;(b) XS1; (c) XS2,综上所述,我们也可以得到关于闭运算的几点结论:(1)闭运算能够填平小湖(即小孔),弥合小裂缝,而总的位置和形状不变。(2)闭运算是通过填充图像的凹角来滤波图像的。(3)结构元素大小的不同将导致滤波效果的不同。(4)不同结构元素的选择导致了不同的分割。,6.2.6 开闭运算的代数性质 由于开、闭运算是在腐蚀和膨胀运算的基础上定义的, 根据腐蚀和膨胀运算的代数性质,我们不难得到下面的性质。1) 对偶性(XCS)C = XS , (XCS)C = XS2)扩展性(收缩性)XSXXS 即开运算恒使原图像缩小,而闭运算恒使原图像扩大,3) 单调性 如果XY, 则XSYS, XSYS 如果YZ且ZY=Z, 那么XYX Z 根椐这一性质可以知道,结构元素的扩大只有在保 证扩大后的结构元素对原结构元素闭运算不变的条件下方能 保持单调性。,4) 平移不变性(X+h)S=(XS)+h, (X+h)S=(XS)+hX(S+h)=XS, X(S+h)=XS 5)等幂性(XS)S = XS, (XS)S = XS 开、闭运算的等幂性意味着一次滤波就能把所有特定结构元素的噪声滤除干净,作重复的运算不会再有效果。这是一个与经典方法 (例如中值滤波、线性卷积)不同的性质。,6.3 灰值形态学,6.3.1 腐蚀与膨胀 1 灰度腐蚀 用结构元素b对输入图像f(x, y)进行灰值腐蚀记为f S, 其定义为式中,Df和Db分别是f和b的定义域。 这里限制(t+x)和(m+y)在f的定义域之内,类似于二值腐蚀定义中要求结构元素完全包括在被腐蚀集合中。,其效果相当于半圆形结构元素在被腐蚀函数的下面“滑动”时,其圆心画出的轨迹。但是,这里存在一个限制条件,即结构元素必须在函数曲线的下面平移。从图中不难看出,半圆形结构元素从函数的下面对函数产生滤波作用,这与圆盘从内部对二值图像滤波的情况是相似的。,采用了一个扁平结构元素对上图的函数作灰值腐蚀。扁平结构元素是一种在其定义域上取常数的结构元素。注意这种结构元素产生的滤波效果。,6.3.2 灰值膨胀 用结构元素S(x,y)对输入图像进行灰值膨胀记为f s,其定义为式中,Df和Db分别是f和S的定义域。这里限制(t-x)和(m-y)在f的定义域之内,类似于在二值膨胀定义中要求两个运算集合至少有一个(非零)元素相交。,灰度膨胀可以通过将结构元素的原点平移到与信号重合,然后,对信号上的每一点求结构元素的最大值得到.,6.3.2 开运算与闭运算 灰度开运算 用结构元素S(灰值图像)对灰值图像f做开运算记为f S,其定义为 f S =(f S) S ,灰值闭运算 用结构元素S(灰值图像)对灰值图像f做闭运算记为fS, 其定义为 f S=(f S) S ,开运算可看作将b贴着f 的下沿从一端滚到另一端。对所有比b的直径小的山峰其高度和尖锐度都减弱了。 开运算操作消除与结构元素相比尺寸较小的亮细节,而保持图像整体灰度值和大的亮区域基本不受影响。 腐蚀去除了小的亮细节并同时减弱了图像亮度,膨胀增加了图像亮度,但又不重新引入前面去除的细节。,闭运算可看作将b贴着f 的上沿从一端滚到另一端。所有比b的直径小的山谷得到了“填充”。闭运算操作消除与结构元素相比尺寸较小的暗细节,而保持图像整体灰度值和大的暗区域基本不受影响;膨胀去除了小的暗细节并同时增强了图像亮度, 腐蚀减弱了图像亮度但又不重新引入前面去除的细节。,6.3.3 形态学重构,形状重构是图像形态处理的重要操作之一,通常用来强调图像中与掩模图像指定对象相一致的部分,同时忽略图像中的其他对象。形态学重构是根据一幅图像(称之为掩模图像mask)的特征对另一幅图像(称之为标记图像marker)进行重复膨胀,重点是要选择一个合适的标记图像,使膨胀所得的结果能够强调掩模图像中的主要对象。每一次膨胀处理从标记图像的峰值点开始,整个膨胀过程将一直重复,直到图像的像素值不再变化为止。形态重构操作具有这样一些独有的特性:形态重构处理是基于两幅图像的,一个是标记图像,另一个是掩模图像,而不仅仅是一幅图像和一个结构元素;重构将一直重复直至图像稳定(即图像不再变化);形态重构是基于连通性概念的,而不是基于结构元素的。,若g是掩模,f为标记,则从f重构g可以记为 ,它有下面的迭代过程定义: 1. 将 初始化为标记图像 。 2. 创建结构元素 。 3. 重复 直到 标记 必须是g 的一个子集,即 。,6.4 形态学的应用,前面已经介绍了二值形态学和灰值形态学的基本运算腐蚀,膨胀,开和闭运算及其一些性质,通过对它们的组合可以得到一系列二值形态学和灰值形态学的实用算法。灰值形态学的主要算法有灰值形态学梯度,形态学平滑,纹理分割等。本节主要介绍形态学滤波,骨架抽取等重要算法。通过本节的讨论,可以从几何角度理解形态学的一些非常实用的技术。不过,应该注意到,在实际应用形态学方法时,通常需要对输入图像做预处理,以便适合于使用这些算法。同时对输出图像可能还要做一些处理,以便产生满意的结果。,6.4.1 形态学滤波 由于开、闭运算所处理的信息分别与图像的凸、凹处相关, 因此,它们本身都是单边算子,可以利用开、闭运算去除图像的噪声、恢复图像,也可交替使用开、闭运算以达到双边滤波目的。一般,可以将开、闭运算结合起来构成形态学噪声滤波器,例如(XS)S或(XS)S等。,整个过程是先做开运算再做闭运算,可以写为,可看出目标区域内外的噪声都消除掉了,而目标本身除原来的4个直角变为圆角外没有太大的变化。在利用开、 闭运算滤除图像的噪声时,选择圆形结构元素会得到较好的结果。为了能使从噪声污染的图像X中恢复原始图像X0的结果达到最优,在确定结构元素的半径时,可以采用优化方法。,6.4.2 骨架抽取 1. 细化 就是从原来的图中去掉一些点,但仍要保持原来的形状。实际上,是保持原图的骨架。,即X B为X与X B的差集。更一般地,利用结构对序列B1,B2,BN迭代地产生输出序列,随着迭代的进行,得到的集合也不断细化,2. 细化的重要性 利用细化技术得到区域的细化结构是常用的方法。寻找二值图像的细化结构是图像处理的一个基本问题。在图像识别或数据压缩时,经常要用到这样的细化结构。 在图像识别或数据压缩时,经常要用到这样的细化结构,3. 骨架 所谓骨架,可以理解为图象的中轴. 例如 :一个长方形的骨架是它的长方向上的中轴线; 圆的骨架是它的圆心; 直线的骨架是它自身; 孤立点的骨架也是自身 。(1)基于烈火模拟: 设想在时刻,将目标边界各处同时点燃,火的前沿以匀速向目标内部蔓延,当前沿相交时火焰熄灭,火焰熄灭点的集合就构成了骨架。,图 骨架的定义,(2)基于最大圆盘: 目标X的骨架由X内所有最大内切圆盘的圆心组成,最大圆盘不是其他任何完全属于X的圆盘的子集,并且至少有两点与目标边界轮廓相切。,定义骨架子集Sk(X)为图像X内所有最大圆盘kB的圆心x构成的集合,对于k0,1, 2, 从骨架的定义可知,骨架是所有骨架子集的并, 即 S(X)= Sk(X )| k0, 1, 2, 可以证明骨架子集为Sk(X)= (X kB)-(X k) 式中,B为结构元素, (X kB)代表连续k次用B对X腐蚀,S(X) = (X kB)-(XkB) | k0, 1, 2, ,图 骨架抽取示例(a) 一幅二值图像; (b) 用33的结构元素S得到的骨架;(c) 用55的结构元素得到的骨架; (d)用77的结构元素得到的骨架,4. 细化算法举例 细化算法有很多,我们在这里介绍的是一种简单而且效果很好的算法,用它就能够实现从文本抽取骨架的功能。我们的对象是白纸黑字的文本。 * 判断一个点是否能去掉的判据: 依据:八个相邻点(八连通)的情况: (1)内部点不能删除; (2)孤立点不能删除; (3)直线端点不能删除; (4)如果P是边界点,去掉P后,如果连通分量不增加,则P可以删除。,方法:查表法 事先做出一张表,从0到255共有256个元素,每个元素要么是0,要么是1。我们根据某点(当然是要处理的黑色点了)的八个相邻点的情况查表,若表中的元素是1,则表示该点可删,若为0则保留。白点为1,黑点为0,0-15 0,0,1,1,0,0,1,1, 1,1,0,1,1,1,0,1,16-31 1,1,0,0,1,1,1,1, 0,0,0,0,0,0,0,1,32-47 0,0,1,1,0,0,1,1, 1,1,0,1,1,1,0,1,48-631,1,0,0,1,1,1,1, 0,0,0,0,0,0,0,1,64-79 1,1,0,0,1,1,0,0, 0,0,0,0,0,0,0,0,80-950,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,96-111 1,1,0,0,1,1,0,0, 1,1,0,1,1,1,0,1,112-1270,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,128-143 0,0,1,1,0,0,1,1, 1,1,0,1,1,1,0,1,144-159 1,1,0,0,1,1,1,1, 0,0,0,0,0,0,0,1,160-175 0,0,1,1,0,0,1,1, 1,1,0,1,1,1,0,1,176-191 1,1,0,0,1,1,1,1, 0,0,0,0,0,0,0,0,192-207 1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,208-223 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0,224-239 1,1,0,0,1,1,0,0,1,1,0,1,1,1,0,0,240-255 1,1,0,0,1,1,1,0,1,1,0,0,1,0,0,0,例题: 对一个黑色矩形进行细化,在每一次水平细化后,再进行一次垂直方向的细化,就可以了, 这样一来,每处理一次,删除点的顺序变成:(先是水平方向扫描)第一行最左边的点;第一行最右边的点;第二行最左边的点;第二行最右边的点;最后一行最左边的点;最后一行最右边的点;(然后是垂直方向扫描)第二列最上边的点(因为第一列最上边的点已被删除);第二列最下边的点;第三列最上边的点;第三列最下边的点;倒数第二列最上边的点(因为倒数第一列最上边的点已被删除);倒数第二列最下边的点。我们发现,刚好剥掉了一圈,这也正是细化要做的事。实际的结果也验证了我们的想法。,在每一行水平扫描的过程中,先判断每一点的左右邻居,如果都是黑点,则该点不做处理。另外,如果某个黑点被删除了,那么跳过它的右邻居,处理下一个点。,

    注意事项

    本文(数学形态学原理ppt课件.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开