欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    数学2 3 3.1《回归分析的基本思想及其初步应用》ppt课件.ppt

    • 资源ID:1917641       资源大小:492.54KB        全文页数:26页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    数学2 3 3.1《回归分析的基本思想及其初步应用》ppt课件.ppt

    3.1 回归分析的基本思想 及其初步应用,比数学必3中“回归”增加的内容,必修统计画散点图了解最小二乘法的思想求回归直线方程ybxa用回归直线方程解决应用问题,选修2-3统计案例引入线性回归模型ybxae了解模型中随机误差项e 产生的原因了解相关指数 R2 和模型 拟合的效果之间的关系了解残差图的作用利用线性回归模型解决 一类非线性回归问题正确理解分析方法与结果,1、两个变量的关系,不相关,相关关系,函数关系,线性相关,非线性相关,问题1:现实生活中两个变量间的关系有哪些?,相关关系:对于两个变量,当自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系。对具有相关关系的两个变量进行统计分析的方法叫回归分析。,思考:相关关系与函数关系有怎样的不同?,函数关系中的两个变量间是一种确定性关系.相关关系是一种非确定性关系.,函数关系是一种理想的关系模型.相关关系在现实生活中大量存在,是更一般的情况.,问题2:对于线性相关的两个变量用什么方法来刻划之间的关系呢?,2、最小二乘估计,最小二乘估计下的线性回归方程:,例1 从某大学中随机选出8名女大学生,其身高和体重数据如下表:,求根据女大学生的身高预报体重的回归方程,并预报一名身高为172的女大学生的体重。,问题一:结合例1得出线性回归模型及随机误差,并且区分函数模型和回归模型。,1. 散点图;2.回归方程:,分析:由于问题中要求根据身高预报体重,因此选取身高为自变量,体重为因变量,身高为172的女大学生的体重一定是60.316kg吗?如果不是, 其原因是什么?,探究?,(1)由图形观察可以看出,样本点呈条状分布,身高和体重有比较好的线性相关关系,因此可以用线性回归方程刻画它们之间的关系。,(2)从散点图还可以看到,样本点散布在某一条直线的附近,而不是一条直线上,所以不能用一次函数来描述它们之间的关系。这时我们用下面的线性回归模型来描述身高和体重的关系:+其中和为模型的未知参数,e是y与 = bx + a 之间的误差, 通常称为随机误差。,其中a和b为模型的未知参数,e称为随机误差。,在线性回归模型(4)中,随机误差e的方差 越小,通过回归直线,预报真实值y的精度越高。随机误差是引起预报值 与真实值y之间的误差的原因之一,其大小取决于随机误差的方差。,另一方面,由于计算出来的 和 为截距和斜率的估计值,它们与真实值a和b之间也存在误差,这种误差是引起预报值 与真实值y之间误差的另一个原因。,随机误差:,线性回归模型:,思考:产生随机误差项e的原因是什么?,随机误差e的来源(可以推广到一般):1、忽略了其它因素的影响:影响身高 y 的因素不只是体重 x,可能还包括遗传基因、饮食习惯、生长环境等因素;2、用线性回归模型近似真实模型所引起的误差;3、身高 y 的观测误差。 以上三项误差越小,说明我们的回归模型的拟合效果越好。,函数模型与“回归模型”的差别:,函数模型:因变量y完全由自变量x确定回归模型:预报变量y完全由解释变量x和随机误差e确定,问题二:在线性回归模型中,e是用bx+a预报真实值y的随机误差,它是一个不可观测的量,那么应如何研究随机误差呢?,称为残差平方和。,表3-2列出了女大学生身高和体重的原始数据以及相应的残差数据。,在研究两个变量间的关系时,首先要根据散点图来粗略判断它们是否线性相关,是否可以用回归模型来拟合数据。,残差分析与残差图的定义:,然后,我们可以通过残差 来判断模型拟合的效果,判断原始数据中是否存在可疑数据,这方面的分析工作称为残差分析。,我们可以利用图形来分析残差特性,作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重估计值等,这样作出的图形称为残差图。,残差图的制作及作用。坐标纵轴为残差变量,横轴可以有不同的选择;若模型选择的正确,残差图中的点应该分布在以横轴为心的带形区域;对于远离横轴的点,要特别注意。,身高与体重残差图,几点说明: 第一个样本点和第6个样本点的残差比较大,需要确认在采集过程中是否有人为的错误。如果数据采集有错误,就予以纠正,然后再重新利用线性回归模型拟合数据;如果数据采集没有错误,则需要寻找其他的原因。 另外,残差点比较均匀地落在水平的带状区域中,说明选用的模型计较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高。,问题三:如何发现数据中的错误?如何衡量随机模型的拟合效果?,(1)我们可以通过分析发现原始数据中的可疑数据,判断建立模型的拟合效果。,(2) 残差图的制作和作用:制作:坐标纵轴为残差变量,横轴可以有不同的选择.横轴为编号:可以考察残差与编号次序之间的关系 横轴为解释变量:可以考察残差与解释变量的关系,作用:判断模型的适用性若模型选择的正确,残差图中的点应该分布在以横轴为中心的带形区域.,R2的值越大,说明残差平方和越小, 模型拟合效果越好。,在线性回归模型中,R2表示解析变量对预报变量变化的贡献率。,R2越接近1,表示回归的效果越好(因为R2越接近1,表示解析变量和预报变量的线性相关性越强)。,如果某组数据可能采取几种不同回归方程进行回归分析,则可以通过比较R2的值来做出选择,即选取R2较大的模型作为这组数据的模型。,相关指数R2是度量模型拟合效果的一种指标。在线性模型中,它代表自变量刻画预报变量的能力。,1) 确定解释变量和预报变量; 2) 画出散点图; 3) 确定回归方程类型; 4) 求出回归方程; 5) 利用相关指数或残差进行分析.,问题四:若两个变量呈现非线性关系,如何解决?(分析例2),例2 一只红铃虫的产卵数y和温度x有关。现收集了7组观测数据列于表中:,(1)试建立产卵数y与温度x之间的回归方程;并预测温度为28oC时产卵数目。(2)你所建立的模型中温度在多大程度上解释了产卵数的变化?,方法一:一元函数模型,产卵数,气温,变换 y=bx+a 非线性关系 线性关系,对数,方法三:指数函数模型,最好的模型是哪个?,指数函数模型最好!,

    注意事项

    本文(数学2 3 3.1《回归分析的基本思想及其初步应用》ppt课件.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开