欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    数学2 3排列组合常用策略ppt课件.ppt

    • 资源ID:1917640       资源大小:509KB        全文页数:22页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    数学2 3排列组合常用策略ppt课件.ppt

    解排列组合问题的常用策略,一.特殊元素和特殊位置优先策略,例1.由0,1,2,3,4,5可以组成多少个没有重复数字 五位奇数.,解:由于末位和首位有特殊要求,应该优先安 排,以免不合要求的元素占了这两个位置,先排末位共有_,然后排首位共有_,最后排其它位置共有_,位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法。,7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?,练习题1,二.相邻元素捆绑策略,例2. 7人站成一排 ,其中甲乙相邻且丙丁相 邻, 共有多少种不同的排法.,解:,要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.,共有 =4320种不同的排法.,练习题2,5个男生3个女生排成一排,3个女生要排在一起,有多少种不同的排法?,三.不相邻问题插空策略,例3.一个晚会的节目有4个舞蹈,2个相声,3个 独唱,舞蹈节目不能连续出场,则节目的出 场顺序有多少种?,解:分两步进行第一步排2个相声和3个独唱共 有 种,,元素不相邻问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端,某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为( ),30,练习题3,四.定序问题倍缩空位插入策略,例4.7人排队,其中甲乙丙3人顺序一定共有多 少种不同的排法,解:,(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 种方法,其余的三个位置甲乙丙共有 种坐法,则共有 种 方法,1,思考:可以先让甲乙丙就坐吗?,(插入法)先排甲乙丙三个人,共有1种排法,再 把其余4四人依次插入共有 方法,4*5*6*7,练习题4,期中安排考试科目9门,语文要在数学之前考,有多少种不同的安排顺序?,(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:,定序问题可以用除法,还可转化为占位插入模型处理,五.重排问题求幂策略,例5.把6名实习生分配到7个车间实习,共有 多少种不同的分法,解:完成此事共分六步:把第一名实习生分配 到车间有 种分法.,7,一般地n不同的元素没有限制地安排在m个位置上的排列数为 种,某8层大楼一楼电梯上来8名乘客人,他们 到各自的一层下电梯,下电梯的方法( ),练习题5,六.排列组合混合问题先选后排策略,例6.有5个不同的小球,装入4个不同的盒内, 每盒至少装一个球,共有多少不同的装 法.,解:第一步从5个球中选出2个组成复合元共 有_种方法.再把5个元素(包含一个复合 元素)装入4个不同的盒内有_种方法.,根据分步计数原理装球的方法共有_,解决排列组合混合问题,先选后排是最基本的指导思想.,练习题6,一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有_ 种,192,练习:1、某学习小组有5个男生3个女生,从中选3名男生和1名女生参加三项竞赛活动,每项活动至少有1人参加,则有不同参赛方法_种.,解:采用先组后排方法:,七.元素相同问题隔板策略,例7.有10个运动员名额,在分给7个班,每班至少一个,有多少种分配方案?,解:因为10个名额没有差别,把它们排成一排。相邻名额之间形成个空隙。,在个空档中选个位置插个隔板,可把名额分成份,对应地分给个班级,每一种插板方法对应一种分法共有_种分法。,将n个相同的元素分成m份(n,m为正整数),每份至少一个元素,可以用 块隔板,插入n个元素排成一排的 个空隙中,所有分法数为,m-1,n-1,练习题7,10个相同的球装5个盒中,每盒至少一个,有多少装法?,从6个学校中选出30名学生参加数学竞赛,每校至少有1人,这样有几种选法?,分析:问题相当于把个30相同球放入6个不同盒子(盒子不能空的)有几种放法?这类问可用“隔板法”处理.解:采用“隔板法” 得:,八.平均分组问题除法策略,例8. 6本不同的书平均分成3堆,每堆2本共有 多少分法?,解: 分三步取书得 种方法,但这里出现 重复计数的现象,不妨记6本书为ABCDEF 若第一步取AB,第二步取CD,第三步取EF 该分法记为(AB,CD,EF),则 中还有 (AB,EF,CD),(CD,AB,EF),(CD,EF,AB) (EF,CD,AB),(EF,AB,CD)共有 种取法 ,而 这些分法仅是(AB,CD,EF)一种分法,故共 有 种分法。,平均分成的组,不管它们的顺序如何,都是一种情况,所以分组后要一定要除以 (n为均分的组数)避免重复计数。,1. 将13个球队分成3组,一组5个队,其它两组4 个队, 有多少分法?,2.某校高二年级共有六个班级,现从外地转 入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为_,练习题8,九. 合理分类与分步策略,例9.在一次演唱会上共10名演员,其中8人能 够唱歌,5人会跳舞,现要演出一个2人唱 歌2人伴舞的节目,有多少选派方法?,解:,10演员中有5人只会唱歌,2人只会跳舞 3人为全能演员。,本题还有如下分类标准:*以3个全能演员是否选上唱歌人员为标准*以3个全能演员是否选上跳舞人员为标准*以只会跳舞的2人是否选上跳舞人员为标准都可经得到正确结果,解含有约束条件的排列组合问题,可按元素的性质进行分类,按事件发生的连续过程分步,做到标准明确。分步层次清楚,不重不漏,分类标准一旦确定要贯穿于解题过程的始终。,从4名男生和3名女生中选出4人参加某个座 谈会,若这4人中必须既有男生又有女生,则不同的选法共有_,34,练习题9,十.构造模型策略,例10.马路上有编号为1,2,3,4,5,6,7,8,9的 九只路灯,现要关掉其中的3盏,但不能关 掉相邻的2盏或3盏,也不能关掉两端的2 盏,求满足条件的关灯方法有多少种?,解:把此问题当作一个排队模型在6盏 亮灯的5个空隙中插入3个不亮的灯 有_ 种,一些不易理解的排列组合题如果能转化为非常熟悉的模型,如占位填空模型,排队模型,装盒模型等,可使问题直观解决,练习题10,某排共有10个座位,若4人就坐,每人左右两边都有空位,那么不同的坐法有多少种?,

    注意事项

    本文(数学2 3排列组合常用策略ppt课件.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开