欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    回归分析的基本思想及其初步应用ppt课件(复习).ppt

    • 资源ID:1916908       资源大小:3.13MB        全文页数:71页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    回归分析的基本思想及其初步应用ppt课件(复习).ppt

    3.1回归分析的基本思想及其初步应用(习题课),一、线性回归模型1.回归方程的相关计算对于两个具有线性相关关系的变量的一组数据(x1,y1),(x2,y2),(xn,yn).设其回归直线方程为y=bx+a,其中a,b是待定参数,由最小二乘法得,分别是a,b的估计值.2.线性回归模型(1)线性回归模型其中a,b为未知参数,通常e为随机变量,称为_.(2)x称为_变量,y称为_变量.,随机误差,解释,预报,思考: 相同吗?试说明缘由.提示:不相同.yi是样本点(xi,yi)的纵坐标; 是样本点的中心 的纵坐标; 是yi的估计值.,二、线性回归分析1.残差对于样本点(xi,yi)(i=1,2,n)的随机误差的估计值 称为相应于点(xi,yi)的残差,_称为残差平方和.,2.残差图利用图形来分析残差特性,作图时纵坐标为_,横坐标可以选为_,也可用其他测量值,这样作出的图形称为残差图. R2越接近于_,表示回归效果越好.,残差,样本编号,1,判断:(正确的打“”,错误的打“”)(1)残差平方和越小,线性回归方程的拟合效果越好.()(2)R2就是相关系数.()(3)R2越接近于1,线性回归方程的拟合效果越好.(),提示:(1)正确.残差平方和越小,说明样本数据与线性回归方程的偏离程度越小,即该方程的拟合效果越好.(2)错误.两者是截然不同的概念,前者刻画了线性回归方程的拟合效果,后者描述了变量相关性的程度.(3)正确.由R2的计算公式可知这句话正确.答案:(1)(2)(3),【知识点拨】1.对线性回归模型的两点说明(1)线性回归模型较好地解释了利用线性回归方程求出的函数值不一定是真实值的缘由.例如,人的体重与身高存在一定的线性关系,但体重除了受身高的影响外,还受其他因素的影响,如饮食,是否喜欢运动等.,(2)线性回归模型中随机误差的主要来源线性回归模型与真实情况引起的误差;省略了一些因素的影响产生的误差;观测与计算产生的误差.,2.线性回归分析(1)残差分析是回归分析的一种方法.利用残差图,可以较直观形象地观测到样本数据同线性回归方程间的关系.,(2)对R2的理解.可以用R2来刻画回归的效果.在线性回归模型中,R2表示解释变量对预报变量变化的贡献率.R2越接近于1,表示解释变量和预报变量的线性相关性越强,回归的效果越好.,如果某组数据可能采取几种不同回归方程进行回归分析,则可以通过比较R2的值来进行选择,即选取R2较大的模型作为这组数据的模型.3.相关系数与R2(1)R2是相关系数的平方,其变化范围为0,1,而相关系数的变化范围为-1,1.,(2)相关系数可较好地反映变量的相关性及正相关或负相关,而R2反映了回归模型拟合数据的效果.(3)当相关系数|r|接近于1时说明两变量的相关性较强,当|r|接近于0时说明两变量的相关性较弱,而当R2接近于1时,说明线性回归方程的拟合效果较好.,1.(2013南安高二检测)下表是x和y之间的一组数据,则y关于x的线性回归方程必过点( )A(2,2) B(1.5,0)C(1,2) D(1.5,4),类型一 求线性回归方程,2.(2013临沂高二检测)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据,(1)请画出上表数据的散点图.(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程 (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:32.5+43+54+64.5=66.5),【解题探究】1.线性回归方程必过哪个点?2.计算线性回归方程 中 值的依据是什么?探究提示:1.线性回归方程必过样本点的中心 2.利用由最小二乘法得到的公式,即其中, 分别是a,b的估计值.,【解析】1.选D.由题意可知,又因为线性回归方程必过样本点的中心 故y关于x的线性回归方程必过点(1.5,4).,2.(1)由题设所给数据,可得散点图如图.,(2)由数据,计算得:又已知 所以,由最小二乘法确定的回归方程的系数为:,因此,所求的线性回归方程为,(3)由(2)的回归方程及技改前生产100吨甲产品的生产能耗,得降低的生产能耗为90(0.7100+0.35)=19.65(吨标准煤).,【拓展提升】求线性回归方程的三个步骤(1)画散点图:由样本点是否呈条状分布来判断两个量是否具有线性相关关系.(2)求回归系数:若存在线性相关关系,则求回归系数.(3)写方程:写出回归直线方程,并利用回归直线方程进行预测说明.,【变式训练】假设关于某设备的使用年限x和所支出的维修费用y(万元)有如下的统计数据:由此资料可知y与x线性相关.(1)求回归直线方程.(2)求使用年限为10时,该设备的维修费用为多少.,【解析】(1)由上表中的数据可得所以所以,(2)当x=10时,即使用年限为10时,该设备的维修费用为12.38万元.,所以回归直线方程为,类型二 线性回归分析1甲、乙、丙、丁4位同学各自对A,B两变量进行回归分析,分别得到散点图与残差平方和 如表所示:,哪位同学的试验结果体现拟合A,B两变量关系的模型拟合精度高( )A.甲 B.乙 C.丙 D.丁,2.某运动员训练次数与成绩之间的数据关系如下:(1)作出散点图. (2)求出回归方程.(3)作出残差图,并说明选用的模型的拟合效果.(4)计算R2,并说明选用的模型的拟合效果.,【解题探究】1.利用残差平方和判断回归方程的拟合效果的理论依据是什么?2.计算R2的公式是什么?,探究提示:1.依据是残差平方和越小,说明回归模型的拟合效果越好;反之,拟合效果越差.2.,【解析】1.选D.根据线性相关的知识,散点图中各样本点条状分布越均匀,同时保持残差平方和越小(对于已经获取的样本数据,R2的表达式中 为确定的数,则残差平方和越小,R2越大),由回归分析建立的线性回归模型的拟合效果越好,由试验结果知丁要好些故选D.,2.(1)作出该运动员训练次数(x)与成绩(y)之间的散点图,如图所示,由散点图可知,它们之间具有线性相关关系,(2) 所以所以回归方程为,(3)作残差图如图所示,由图可知,残差点比较均匀地分布在水平带状区域中,说明选用的模型比较合适,(4)计算得R20.985 5,说明了该运动员的成绩的差异有98.55%是由训练次数引起的,【互动探究】在题2题设条件不变的情况下,试预测该运动员训练47次及55次的成绩【解析】由上述分析可知,我们可用回归方程 1.041 5x0.003 88作为该运动员成绩的预报值将x47和x55分别代入该方程可得y49和y57.故预测该运动员训练47次和55次的成绩分别为49和57.,【拓展提升】刻画回归效果的三种方式(1)残差图法:残差点比较均匀地落在水平的带状区域内说明选用的模型比较合适.(2)残差平方和法:残差平方和 越小,模型的拟合效果越好.(3)R2法: 越接近1,表明回归的效果越好.,【变式训练】关于x与y有如下数据:有如下的两个线性模型:试比较哪一个拟合效果更好,【解析】 由(1)得 的关系如下表:所以,所以, 由(2)可得 的关系如下表:所以,所以由于所以所以(1)的拟合效果好于(2)的拟合效果,类型三 非线性回归问题 1.在研究两个变量的相关关系时,观察散点图发现样本点集中于某一条指数曲线y=ebx+a 的周围,令 求得回归直线方程为 则该模型的回归方程为_.,2.在一次抽样调查中测得样本的5个样本点,数值如下表:试建立y与x之间的回归方程,【解题探究】1.求解本题中的回归方程需借助什么关系?2.是否所有的变量间均为线性相关关系?如何判断?探究提示:1.需借助指数、对数互化关系求解本题中的回归方程.2.并非所有的变量间均为线性相关关系,可借助散点图直观感知,再借助回归分析判断回归模型的拟合的效果.,【解析】1.因为所以 y=e0.25x-2.58答案:y=e0.25x-2.58,2.由数值表可作散点图如图.根据散点图可知,y与x具有反比例函数关系,设则ykt,原数据变为:由置换后的数值表作散点图如下:,由散点图可以看出y与t呈近似的线性相关关系列表如下:,所以 所以所以所以y与x的回归方程是,【拓展提升】非线性回归问题的处理方法1.指数函数型y=ebx+a(1)函数y=ebx+a的图象:,(2)处理方法:两边取对数得ln y=ln ebx+a,即ln y=bx+a.令z=ln y,把原始数据(x,y)转化为(x,z),再根据线性回归模型的方法求出a,b.,2.对数函数型y=bln x+a (1)函数y=bln x+a的图象:(2)处理方法:设x=ln x,原方程可化为y=bx+a,再根据线性回归模型的方法求出a,b.,3.y=bx2+a型处理方法:设x=x2,原方程可化为y=bx+a,再根据线性回归模型的方法求出a,b.,【变式训练】某种图书每册的成本费y(元)与印刷册数x(千册)有关,经统计得到数据如下:已知每册书的成本费y与印刷册数的倒数 之间有线性相关关系,求出y关于x的回归方程,【解析】首先作变量变换,令 则题目所给数据变成如下表所示的数据:由题意可知,每册书的成本费y与印刷册数的倒数 之间有线性相关关系,故由最小二乘法得: 所以y=8.973u+1.125.回代 可得因此y关于x的回归方程为,【防范措施】1.注重双基的积累基础知识及基本方法是解决所有问题的依据,需熟练掌握.如本例中回归方程的特点是解决本题的关键所在.2.注意题设信息的提取对于建模问题,合理提取题设信息可顺利地建立函数模型,如本例中利润函数的建立,可直接利用“利润=销售收入成本”求解.,【类题试解】某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程(2)利用(1)中所求出的直线方程预测该地2012年的粮食需求量.,【解析】(1)由所给数据看出,年需求量与年份之间是近似直线上升,下面来求回归直线方程,先将数据预处理如下:由预处理后的数据,容易算得,由上述计算结果,知所求回归直线方程为即 (2)利用所求得的直线方程,可预测2012年的粮食需求量为6.5(2 012-2 006)+260.2=6.56+260.2=299.2(万吨).,1以下四个散点图中,两个变量的关系适合用线性回归模型刻画的是( )A B C D【解析】选B.中的点分布在一条直线附近,适合用线性回归模型刻画,均不适合,2.在两个变量y与x的回归模型中,分别选择了4个不同的模型,它们的R2分别为:模型1的R2为0.98,模型2的R2为0.80,模型3的R2为0.50,模型4的R2为0.25.其中拟合效果最好的是( )A模型1 B模型2C模型3 D模型4,【解析】选A. 因为0.980.800.500.25,故由R2同回归模型拟合效果的关系可知模型1的拟合效果最好.,3.对于指数曲线y=aebx,令U=ln y,c=ln a,经过非线性化回归分析后,可转化的形式为( )A.U=c+bx B.U=b+cxC.y=c+bx D.y=b+cx【解析】选A.因为y=aebx,所以ln y=ln a+bx,所以U=c+bx.,4.设一个回归直线方程为 当自变量x增加1个单位时( )A.y平均增加3个单位 B.y平均增加5个单位C.y平均减少5个单位 D.y平均减少3个单位【解析】选C.可知当自变量x增加1个单位时,y平均减少5个单位.,5.在一段时间内,某种商品的价格x(单位:元)和需求量y(单位:件)之间的一组数据为:求出y关于x的回归直线方程,并说明拟合效果的好坏.,【解析】因为所以所以回归直线方程为,列出残差表为:因为R2接近于1,所以拟合效果较好.,

    注意事项

    本文(回归分析的基本思想及其初步应用ppt课件(复习).ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开