欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    多元函数微分学全章(高数ppt课件)超经典.ppt

    • 资源ID:1891777       资源大小:12.97MB        全文页数:339页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    多元函数微分学全章(高数ppt课件)超经典.ppt

    推广,第九章,一元函数微分学,多元函数微分学,注意: 善于类比, 区别异同,多元函数微分学,第一、二节,一、区域,二、多元函数的概念,三、多元函数的极限,四、多元函数的连续性,机动 目录 上页 下页 返回 结束,多元函数的概念,一、 区域,1. 邻域,点集,称为点 P0 的邻域.,例如,在平面上,(圆邻域),在空间中,(球邻域),说明:若不需要强调邻域半径 ,也可写成,点 P0 的去心邻域记为,机动 目录 上页 下页 返回 结束,在讨论实际问题中也常使用方邻域,平面上的方邻域为,。,因为方邻域与圆,邻域可以互相包含.,机动 目录 上页 下页 返回 结束,2. 区域,(1) 内点、外点、边界点,设有点集 E 及一点 P :, 若存在点 P 的某邻域 U(P) E , 若存在点 P 的某邻域 U(P) E = , 若对点 P 的任一邻域 U(P) 既含 E中的内点也含 E,则称 P 为 E 的内点;,则称 P 为 E 的外点 ;,则称 P 为 E 的边界点 .,机动 目录 上页 下页 返回 结束,的外点 ,显然, E 的内点必属于 E ,E 的外点必不属于 E ,E 的,边界点可能属于 E, 也可能不属于 E .,(2) 聚点,若对任意给定的 ,点P 的去心,机动 目录 上页 下页 返回 结束,邻域,内总有E 中的点 ,则,称 P 是 E 的聚点.,聚点可以属于 E , 也可以不属于 E,(因为聚点可以为,所有聚点所成的点集成为 E 的导集 .,E 的边界点 ),(3) 开区域及闭区域, 若点集 E 的点都是内点,则称 E 为开集;, 若点集 E E , 则称 E 为闭集;, 若集 D 中任意两点都可用一完全属于 D 的折线相连 , 开区域连同它的边界一起称为闭区域.,则称 D 是连通的 ;, 连通的开集称为开区域 ,简称区域 ;,机动 目录 上页 下页 返回 结束,。 。, E 的边界点的全体称为 E 的边界, 记作E ;,例如,在平面上,开区域,闭区域,机动 目录 上页 下页 返回 结束, 整个平面, 点集,是开集,,是最大的开域 ,也是最大的闭域;,但非区域 .,机动 目录 上页 下页 返回 结束, 对区域 D , 若存在正数 K , 使一切点 PD 与某定点,A 的距离 AP K ,则称 D 为有界域 ,界域 .,否则称为无,3. n 维空间,n 元有序数组,的全体称为 n 维空间,n 维空间中的每一个元素,称为空间中的,称为该点的第 k 个坐标 .,记作,即,机动 目录 上页 下页 返回 结束,一个点,当所有坐标,称该元素为,中的零元,记作,O .,的距离记作,中点 a 的 邻域为,机动 目录 上页 下页 返回 结束,规定为,与零元 O 的距离为,二、多元函数的概念,引例:, 圆柱体的体积, 定量理想气体的压强, 三角形面积的海伦公式,机动 目录 上页 下页 返回 结束,定义1. 设非空点集,点集 D 称为函数的定义域 ;,数集,称为函数的值域 .,特别地 , 当 n = 2 时, 有二元函数,当 n = 3 时, 有三元函数,映射,称为定义,在 D 上的 n 元函数 , 记作,机动 目录 上页 下页 返回 结束,例如, 二元函数,定义域为,圆域,说明:,二元函数 z = f (x, y), (x, y) D,图形为中心在原点的上半球面.,机动 目录 上页 下页 返回 结束,的图形一般为空间曲面 .,三元函数,定义域为,图形为,空间中的超曲面.,单位闭球,三、多元函数的极限,定义2. 设 n 元函数,点 ,则称 A 为函数,(也称为 n 重极限),当 n =2 时, 记,二元函数的极限可写作:,P0 是 D 的聚,若存在常数 A ,对一,记作,都有,机动 目录 上页 下页 返回 结束,对任意正数 , 总存在正数 ,切,例1. 设,求证:,证:,故,总有,机动 目录 上页 下页 返回 结束,要证,例2. 设,求证:,证:,故,总有,要证,机动 目录 上页 下页 返回 结束, 若当点,趋于不同值或有的极限不存在,,解: 设 P(x , y) 沿直线 y = k x 趋于点 (0, 0) ,在点 (0, 0) 的极限.,则可以断定函数极限,则有,k 值不同极限不同 !,在 (0,0) 点极限不存在 .,以不同方式趋于,不存在 .,例3. 讨论函数,函数,机动 目录 上页 下页 返回 结束,例4. 求,解: 因,而,此函数定义域不包括 x , y 轴,则,故,机动 目录 上页 下页 返回 结束,仅知其中一个存在,推不出其它二者存在., 二重极限,不同.,如果它们都存在, 则三者相等.,例如,显然,与累次极限,但由例3 知它在(0,0)点二重极限不存在 .,例3 目录 上页 下页 返回 结束,四、 多元函数的连续性,定义3 . 设 n 元函数,定义在 D 上,如果函数在 D 上各点处都连续, 则称此函数在 D 上,如果存在,否则称为不连续,此时,称为间断点 .,则称 n 元函数,机动 目录 上页 下页 返回 结束,连续.,连续,例如, 函数,在点(0 , 0) 极限不存在,又如, 函数,上间断.,故 ( 0, 0 )为其间断点.,在圆周,机动 目录 上页 下页 返回 结束,结论: 一切多元初等函数在定义区域内连续.,定理:若 f (P) 在有界闭域 D 上连续, 则,机动 目录 上页 下页 返回 结束,* (4) f (P) 必在D 上一致连续 .,在 D 上可取得最大值 M 及最小值 m ;,(3) 对任意,(有界性定理),(最值定理),(介值定理),(一致连续性定理),闭域上多元连续函数有与一元函数类似的如下性质:,(证明略),解: 原式,例5.求,例6. 求函数,的连续域.,解:,机动 目录 上页 下页 返回 结束,内容小结,1. 区域,邻域 :,区域,连通的开集,2. 多元函数概念,n 元函数,常用,二元函数,(图形一般为空间曲面),三元函数,机动 目录 上页 下页 返回 结束,有,3. 多元函数的极限,4. 多元函数的连续性,1) 函数,2) 闭域上的多元连续函数的性质:,有界定理 ;,最值定理 ;,介值定理,3) 一切多元初等函数在定义区域内连续,机动 目录 上页 下页 返回 结束,练习:,1. 设,求,解法1 令,机动 目录 上页 下页 返回 结束,1 .,设,求,解法2 令,即,机动 目录 上页 下页 返回 结束,2.,是否存在?,解:,所以极限不存在.,机动 目录 上页 下页 返回 结束,3. 证明,在全平面连续.,证:,为初等函数 , 故连续.,又,故函数在全平面连续 .,由夹逼准则得,机动 目录 上页 下页 返回 结束,思考题,思考题解答,不能.,例,取,但是 不存在.,原因为若取,练 习 题,练习题答案,解答提示:,P11 题 2.,称为二次齐次函数 .,P11 题 4.,P11 题 5(3).,定义域,P11 题 5(5).,定义域,机动 目录 上页 下页 返回 结束,P12 题 8.,间断点集,P72 题 3.,定义域,P72 题 4.,令 y= k x ,,若令,机动 目录 上页 下页 返回 结束, 则,可见极限不存在,第三节,机动 目录 上页 下页 返回 结束,一、 偏导数的定义及其计算,二 、高阶偏导数,偏 导 数,三 、小结 思考题,一、偏导数的定义及其计算法,偏导数的概念可以推广到二元以上函数,如 在 处,解,证,原结论成立,解,不存在,证,有关偏导数的几点说明:,、,、,求分界点、不连续点处的偏导数要用定义求;,解,例 5,解,按定义可知:,、偏导数存在与连续的关系,?,但函数在该点处并不连续.,偏导数存在 连续.,一元函数中在某点可导 连续,,多元函数中在某点偏导数存在 连续,,4. 二元函数偏导数的几何意义:,是曲线,在点 M0 处的切线,对 x 轴的斜率.,在点M0 处的切线,斜率.,是曲线,机动 目录 上页 下页 返回 结束,对 y 轴的,纯偏导,混合偏导,定义:二阶及二阶以上的偏导数统称为高阶偏导数.,二、高阶偏导数,解,解,问题:,混合偏导数都相等吗?,例 8,解,按定义可知:,问题:,具备怎样的条件才能使混合偏导数相等?,解,证毕,偏导数的定义,偏导数的计算、偏导数的几何意义,高阶偏导数,(偏增量比的极限),纯偏导,混合偏导,(相等的条件),三、小结,1. 偏导数的概念及有关结论,定义; 记号; 几何意义,函数在一点偏导数存在,函数在此点连续,混合偏导数连续,与求导顺序无关,2. 偏导数的计算方法,求一点处偏导数的方法,先代后求,先求后代,利用定义,求高阶偏导数的方法,逐次求导法,(与求导顺序无关时, 应选择方便的求导顺序),机动 目录 上页 下页 返回 结束,思考题,思考题解答,不能.,例如,提高题 :,设,方程,确定 u 是 x , y 的函数 ,连续, 且,求,解:,机动 目录 上页 下页 返回 结束,练 习 题,练习题答案,*三、全微分在数值计算中的应用,应用,第四节,一元函数 y = f (x) 的微分,近似计算,估计误差,机动 目录 上页 下页 返回 结束,本节内容:,一、全微分的定义,全微分及其应用,二、全微分的条件,由一元函数微分学中增量与微分的关系得,一、全微分的定义,全增量的概念,全微分的定义,事实上,二、可微的条件,证,总成立,同理可得,一元函数在某点的导数存在 微分存在,多元函数的各偏导数存在 全微分存在,?,例如,,则,当 时,,说明:多元函数的各偏导数存在并不能保证全 微分存在,,证,(依偏导数的连续性),同理,习惯上,记全微分为,全微分的定义可推广到三元及三元以上函数,通常我们把二元函数的全微分等于它的两个偏微分之和这件事称为二元函数的微分符合叠加原理,叠加原理也适用于二元以上函数的情况,解,所求全微分,解,解,所求全微分,多元函数连续、可导、可微的关系,三、全微分在近似计算中的应用,也可写成,解,由公式得,多元函数全微分的概念;,多元函数全微分的求法;,多元函数连续、可导、可微的关系,(注意:与一元函数有很大区别),小结,思考题,在点 (0,0) 可微 .,提高题:,在点 (0,0) 连续且偏导数存在,续,证: 1),因,故函数在点 (0, 0) 连续 ;,但偏导数在点 (0,0) 不连,机动 目录 上页 下页 返回 结束,证明函数,所以,同理,极限不存在 ,在点(0,0)不连续 ;,同理 ,在点(0,0)也不连续.,2),3),题目 目录 上页 下页 返回 结束,4) 下面证明,可微 :,说明: 此题表明, 偏导数连续只是可微的充分条件.,令,则,题目 目录 上页 下页 返回 结束,练 习 题,练习题答案,第五节,一元复合函数,求导法则,一、多元复合函数求导的链式法则,二、多元复合函数的全微分形式不变性,微分法则,机动 目录 上页 下页 返回 结束,多元复合函数的求导法则,三、小结 思考题,证,一、链式法则,上定理的结论可推广到中间变量多于两个的情况.,如,以上公式中的导数 称为全导数.,若定理中,说明:,例如:,易知:,但复合函数,偏导数连续减弱为,偏导数存在,机动 目录 上页 下页 返回 结束,则定理结论不一定成立.,上定理还可推广到中间变量不是一元函数而是多元函数的情况:,链式法则如图示,分段用乘, 分叉用加, 单路全导, 叉路偏导.,口诀:,解,特殊地,即,令,其中,两者的区别,区别类似,例2.,解:,机动 目录 上页 下页 返回 结束,例3. 设,求全导数,解:,注意:多元抽象复合函数求导在偏微分方程变形与,机动 目录 上页 下页 返回 结束,验证解的问题中经常遇到,下列两个例题有助于掌握,这方面问题的求导技巧与常用导数符号.,为简便起见 , 引入记号,例4. 设,f 具有二阶连续偏导数,求,解: 令,则,机动 目录 上页 下页 返回 结束,例5. 设,二阶偏导数连续,求下列表达式在,解: 已知,极坐标系下的形式,(1), 则,机动 目录 上页 下页 返回 结束,题目 目录 上页 下页 返回 结束,已知,注意利用已有公式,机动 目录 上页 下页 返回 结束,同理可得,题目 目录 上页 下页 返回 结束,二、多元复合函数的全微分的形式不变性,设函数,的全微分为,可见无论 u , v 是自变量还是中间变量,则复合函数,都可微,其全微分表达,形式都一样,这性质叫做全微分形式不变性.,机动 目录 上页 下页 返回 结束,解,例1 .,例 7.,利用全微分形式不变性再解例1.,解:,所以,机动 目录 上页 下页 返回 结束,三、内容小结,1. 复合函数求导的链式法则,“分段用乘,分叉用加,单路全导,叉路偏导”,例如,2. 全微分形式不变性,不论 u , v 是自变量还是因变量,机动 目录 上页 下页 返回 结束,思考与练习,题1,机动 目录 上页 下页 返回 结束,题2,机动 目录 上页 下页 返回 结束,题 3,第五节 目录 上页 下页 返回 结束,提高题,1. 已知,求,解: 由,两边对 x 求导, 得,机动 目录 上页 下页 返回 结束,2.,求,解: 由题设,(考研题),机动 目录 上页 下页 返回 结束,练 习 题,练习题答案,第六节,机动 目录 上页 下页 返回 结束,一、一个方程的情形,二、方程组的情形,隐函数的求导公式,本节讨论 :,1) 方程在什么条件下才能确定隐函数 .,例如, 方程,当 C 0 时, 能确定隐函数;,当 C 0 时, 不能确定隐函数;,2) 在方程能确定隐函数时,研究其连续性、可微性,及求导方法问题 .,机动 目录 上页 下页 返回 结束,一、一个方程的情形,定理1. 设函数,则方程,单值连续函数 y = f (x) ,并有连续,(隐函数求导公式),定理证明从略,仅就求导公式推导如下:, 具有连续的偏导数;,的某邻域内可唯一确定一个,在点,的某一邻域内满足,满足条件,机动 目录 上页 下页 返回 结束,导数,两边对 x 求导,在,的某邻域内,则,机动 目录 上页 下页 返回 结束,若F( x , y ) 的二阶偏导数也都连续,二阶导数 :,则还有,机动 目录 上页 下页 返回 结束,例1. 验证方程,在点(0,0)某邻域,可确定一个单值可导隐函数,解: 令,连续 ,由 定理1 可知,导的隐函数,则,在 x = 0 的某邻域内方程存在单值可,且,机动 目录 上页 下页 返回 结束,并求,机动 目录 上页 下页 返回 结束,两边对 x 求导,两边再对 x 求导,令 x = 0 , 注意此时,导数的另一求法, 利用隐函数求导,机动 目录 上页 下页 返回 结束,定理2 .,若函数,的某邻域内具有连续偏导数 ,则方程,在点,并有连续偏导数,定一个单值连续函数 z = f (x , y) ,定理证明从略, 仅就求导公式推导如下:,满足, 在点,满足:,某一邻域内可唯一确,机动 目录 上页 下页 返回 结束,两边对 x 求偏导,同样可得,则,机动 目录 上页 下页 返回 结束,例2. 设,解法1 利用隐函数求导,机动 目录 上页 下页 返回 结束,再对 x 求导,解法2 利用公式,设,则,两边对 x 求偏导,机动 目录 上页 下页 返回 结束,例3.,设F( x , y)具有连续偏导数,解法1 利用偏导数公式.,确定的隐函数,则,已知方程,机动 目录 上页 下页 返回 结束,故,对方程两边求微分:,解法2 微分法.,机动 目录 上页 下页 返回 结束,用消元法解二元线性方程组,行列式的引入,方程组的解为,由方程组的四个系数确定.,由四个数排成二行二列(横排称行、竖排称列)的数表,定义1,即,主对角线,副对角线,对角线法则,二阶行列式的计算,若记,对于二元线性方程组,系数行列式,则二元线性方程组的解为,注意 分母都为原方程组的系数行列式且 不等于0.,例1,解,如果三元线性方程组,的系数行列式,利用三阶行列式求解三元线性方程组,若记,或,记,即,得,得,则三元线性方程组的解为:,例4 解线性方程组,解,由于方程组的系数行列式,二、方程组的情形,隐函数存在定理还可以推广到方程组的情形.,由 F、G 的偏导数组成的行列式,称为F、G 的雅可比( Jacobi )行列式.,以两个方程确定两个隐函数的情况为例 ,即,雅可比 目录 上页 下页 返回 结束,定理3.,的某一邻域内具有连续偏,设函数,则方程组,的单值连续函数,且有偏导数公式 :, 在点,的某一邻域内可唯一确定一组满足条件,满足:,导数;,机动 目录 上页 下页 返回 结束,定理证明略.仅推导偏导数公式如下:,机动 目录 上页 下页 返回 结束,有隐函数组,则,两边对 x 求导得,设方程组,在点P 的某邻域内,公式 目录 上页 下页 返回 结束,故得,系数行列式,同样可得,机动 目录 上页 下页 返回 结束,例4. 设,解:,方程组两边对 x 求导,并移项得,求,练习: 求,机动 目录 上页 下页 返回 结束,答案:,由题设,故有,内容小结,1. 隐函数( 组) 存在定理,2. 隐函数 ( 组) 求导方法,方法1. 利用复合函数求导法则直接计算 ;,方法2. 利用微分形式不变性 ;,方法3. 代公式,思考与练习,设,求,机动 目录 上页 下页 返回 结束,提示:,机动 目录 上页 下页 返回 结束,解法2. 利用全微分形式不变性同时求出各偏导数.,第六节 目录 上页 下页 返回 结束,由d y, d z 的系数即可得,备用题,分别由下列两式确定 :,又函数,有连续的一阶偏导数 ,1. 设,解: 两个隐函数方程两边对 x 求导, 得,(考研题),机动 目录 上页 下页 返回 结束,解得,因此,2. 设,是由方程,和,所确定的函数 , 求,解法1 分别在各方程两端对 x 求导, 得,(考研题),机动 目录 上页 下页 返回 结束,解法2 微分法.,对各方程两边分别求微分:,化简得,消去,机动 目录 上页 下页 返回 结束,可得,雅可比(1804 1851),德国数学家.,他在数学方面最主要,的成就是和挪威数学家阿贝儿相互独,地奠定了椭圆函数论的基础.,他对行列,式理论也作了奠基性的工作.,在偏微分,方程的研究中引进了“雅可比行列式”,并应用在微积分,中.,他的工作还包括代数学, 变分法, 复变函数和微分方,程,在分析力学, 动力学及数学物理方面也有贡献 .,他,在柯尼斯堡大学任教18年, 形成了以他为首的学派.,练 习 题,练习题答案,第七节,二、方向导数的定义,机动 目录 上页 下页 返回 结束,三、梯度的概念四、小结 思考题,方向导数与梯度,一、问题的提出,实例:一块长方形的金属板,四个顶点的坐标是(1,1),(5,1),(1,3),(5,3)在坐标原点处有一个火焰,它使金属板受热假定板上任意一点处的温度与该点到原点的距离成反比在(3,2)处有一个蚂蚁,问这只蚂蚁应沿什么方向爬行才能最快到达较凉快的地点?,问题的实质:应沿由热变冷变化最骤烈的方向(即梯度方向)爬行,一、问题的提出,讨论函数 在一点P沿某一方向的变化率问题,二、方向导数的定义,(如图),当 沿着 趋于 时,,是否存在?,记为,证明,由于函数可微,则增量可表示为,两边同除以,得到,故有方向导数,方向导数的几何意义:,方向导数的几何意义:,解,解,由方向导数的计算公式知,故,推广可得三元函数方向导数的定义,例3. 求函数,在点 P(1, 1, 1) 沿向量,3) 的方向导数 .,机动 目录 上页 下页 返回 结束,解,令,故,方向余弦为,故,三、梯度的概念,方向导数公式,令向量,这说明,方向:f 变化率最大的方向,模 : f 的最大变化率之值,方向导数取最大值:,机动 目录 上页 下页 返回 结束,1. 定义,即,同样可定义二元函数,称为函数 f (P) 在点 P 处的梯度,记作,(gradient),在点,处的梯度,机动 目录 上页 下页 返回 结束,说明:,函数的方向导数为梯度在该方向上的投影.,向量,2. 梯度的几何意义,结论,在几何上 表示一个曲面,曲面被平面 所截得,所得曲线在xoy面上投影如图,等高线,梯度为等高线上的法向量,梯度与等高线的关系:,3. 梯度的基本运算公式,机动 目录 上页 下页 返回 结束,例4.,证:,试证,机动 目录 上页 下页 返回 结束,解,由梯度计算公式得,故,1、方向导数的概念,2、梯度的概念,3、方向导数与梯度的关系,(注意方向导数与一般所说偏导数的区别),(注意梯度是一个向量),四、小结,1. 方向导数, 三元函数,在点,沿方向 l (方向角,的方向导数为, 二元函数,在点,的方向导数为,沿方向 l (方向角为,机动 目录 上页 下页 返回 结束,2. 梯度, 三元函数,在点,处的梯度为, 二元函数,在点,处的梯度为,3. 关系,方向导数存在,偏导数存在, 可微,机动 目录 上页 下页 返回 结束,思考题,思考题解答,练 习,1. 设函数,(1) 求函数在点 M ( 1, 1, 1 ) 处沿曲线,在该点切线方向的方向导数;,(2) 求函数在 M( 1, 1, 1 ) 处的梯度与(1)中切线方向,的夹角 .,机动 目录 上页 下页 返回 结束,曲线,1. (1),在点,解答提示:,机动 目录 上页 下页 返回 结束,M (1,1,1) 处切线的方向向量,机动 目录 上页 下页 返回 结束,练习题:1.,函数,在点,处的梯度,解:,则,注意 x , y , z 具有轮换对称性,机动 目录 上页 下页 返回 结束,指向 B( 3, 2 , 2) 方向的方向导数是 .,在点A( 1 , 0 , 1) 处沿点A,2. 函数,提示:,则,机动 目录 上页 下页 返回 结束,练 习 题,练习题答案,第八节,二、多元函数的极值和最值,三、条件极值,机动 目录 上页 下页 返回 结束,多元函数的极值,一、问题的提出,四、小结 思考题,由于这个世界构造完美无缺,并由最聪明的造物主所创立,以至在这个世界上无论什么事情里都包含有极大或极小的道理.,-Euler,实例:某商店卖两种牌子的果汁,本地牌子每瓶进价1元,外地牌子每瓶进价1.2元,店主估计,如果本地牌子的每瓶卖 元,外地牌子的每瓶卖 元,则每天可卖出 瓶本地牌子的果汁, 瓶外地牌子的果汁问:店主每天以什么价格卖两种牌子的果汁可取得最大收益?,每天的收益为,求最大收益即为求二元函数的最大值.,一、问题的提出,二、多元函数的极值和最值,播放,1、二元函数极值的定义,例如函数 在点(0,0)处取得极小值,如下左图:,函数 在点(0,0)处取得极大值,如上右图:,如何求极值?如果能将有可能使函数取得极值的点找到,这个问题就基本解决了。,注意:,为极大点,为极小点,不是极值点,2) 对常见函数, 极值可能出现在导数为 0 或 不存在的点.,1) 函数的极值是函数的局部性质.,机动 目录 上页 下页 返回 结束,复习:对一元函数来说,如下图,定理1(必要条件),注意: 驻点 极值点,例如,复习:,仿照一元函数,凡能使一阶偏导数同时为零的点,均称为二元函数的驻点.,驻点,极值点,注意:,在点 (0,0) 有极大值,(0,0)不是驻点,2.多元函数取得极值的条件,定理1(取得极值的必要条件),设函数zf(x y)在点(x0 y0)具有偏导数 且在点 (x0 y0)处有极值 则有 fx(x0 y0)0 fy(x0 y0)0,从几何上看 这时如果曲面zf(x y)在点(x0 y0 z0) 处有切平面 则切平面 zz0fx(x0 y0)(xx0) fy(x0 y0)(yy0) 成为平行于xOy坐标面的平面zz0,说明:,Problem:如何判定一个驻点是否为极值点?,回忆 (极值第二判别法),二阶导数 , 且,则 在点 取极大值 ;,则 在点 取极小值 .,对于二元函数,我们能否给出类似的判别法?,时, 具有极值,定理2(充分条件),的某邻域内具有一阶和二阶连续偏导数, 且,令,则: 1) 当,A0 时取极大值;,A0 时取极小值.,2) 当,3) 当,时, 没有极值.,时, 不能确定 , 需另行讨论.,若函数,机动 目录 上页 下页 返回 结束,例4.,求函数,解: 第一步 求驻点.,得驻点: (1, 0) , (1, 2) , (3, 0) , (3, 2) .,第二步 判别.,(1)在点(1,0) 处,为极小值;,解方程组,的极值.,求二阶偏导数,机动 目录 上页 下页 返回 结束,(3)在点(3,0) 处,不是极值;,(4)在点(3,2) 处,为极大值.,(2)在点(1,2) 处,不是极值;,机动 目录 上页 下页 返回 结束,例5.讨论函数,及,是否能取得极值.,解: 显然 (0,0) 都是它们的驻点 ,在(0,0)点邻域内的取值, 因此 z(0,0) 不是极值.,因此,为极小值.,正,负,0,在点(0,0),并且在 (0,0) 都有,可能为,机动 目录 上页 下页 返回 结束,练习题1:,求由方程,确定的函数,的极值.,解答提示:,解法一,(1)将方程两边分别对,求偏导数,得驻点P(1,-1),(2)继续再分别对,求偏导数,得:,(3),解法二:,配方方程可变形为,显然,当,时,根号中的极大值为4,极小值为-4,所以,练习题2:,2003年考研数学(一), 4分,已知函数,在(0,0)点的某个邻域内连续,(A) 点(0,0)不是,的极值点,(B) 点(0,0)是,的极大值点,(C) 点(0,0)是,的极小值点,(A),3、多元函数的最值,函数 f 在闭域上连续,函数 f 在闭域上可达到最值,最值可疑点,驻点,边界上的最值点,特别, 当区域内部最值存在, 且只有一个极值点P 时,为极小 值,为最小 值,(大),(大),依据,机动 目录 上页 下页 返回 结束,例6.,解: 设水箱长,宽分别为 x , y m ,则高为,则水箱所用材料的面积为,令,得驻点,某厂要用铁板做一个体积为2,根据实际问题可知最小值在定义域内应存在,的有盖长方体水,问当长、宽、高各取怎样的尺寸时, 才能使用料最省?,因此可,断定此唯一驻点就是最小值点.,即当长、宽均为,高为,时, 水箱所用材料最省.,机动 目录 上页 下页 返回 结束,例7. 有一宽为 24cm 的长方形铁板 ,把它折起来做成,解: 设折起来的边长为 x cm,则断面面积,一个断面为等腰梯形的水槽,倾角为 ,积最大.,为,问怎样折法才能使断面面,机动 目录 上页 下页 返回 结束,令,解得:,由题意知,最大值在定义域D 内达到,而在域D 内只有,一个驻点,故此点即为所求.,机动 目录 上页 下页 返回 结束,实例: 小王有200元钱,他决定用来购买两种急需物品:计算机磁盘和录音磁带,设他购买 张磁盘, 盒录音磁带达到最佳效果,效果函数为 设每张磁盘8元,每盒磁带10元,问他如何分配这200元以达到最佳效果,问题的实质:求 在条件 下的极值点,三、条件极值拉格朗日乘数法,极值问题,无条件极值:,条 件 极 值 :,条件极值的求法:,方法1 代入法.,求一元函数,的无条件极值问题,对自变量只有定义域限制,对自变量除定义域限制外,还有其它条件限制,例如 ,机动 目录 上页 下页 返回 结束,方法2 拉格朗日乘数法(Lagrange Multipliers).,例9.,要设计一个容量为,则问题为求x , y ,令,解方程组,解: 设 x , y , z 分别表示长、宽、高,下水箱表面积,最小.,z 使在条件,水箱长、宽、高等于多少时所用材料最省?,的长方体开口水箱, 试问,机动 目录 上页 下页 返回 结束,得唯一驻点,由题意可知合理的设计是存在的,长、宽为高的 2 倍时,所用材料最省.,因此 , 当高为,机动 目录 上页 下页 返回 结束,Question:,1) 当水箱封闭时, 长、宽、高的尺寸如何?,Hint: 利用对称性可知,2) 当开口水箱底部的造价为侧面的二倍时, 欲使造价,最省, 应如何设拉格朗日函数? 长、宽、高尺寸如何?,Hint:,长、宽、高尺寸相等 .,解,则,解,可得,即,多元函数的极值,拉格朗日乘数法,(取得极值的必要条件、充分条件),多元函数的最值,四、小结,思考题,思考题解答,练 习 题,练习题答案,第九节,二、多元函数的极值和最值,三、条件极值,机动 目录 上页 下页 返回 结束,多元函数的极值,一、问题的提出,四、小结 思考题,由于这个世界构造完美无缺,并由最聪明的造物主所创立,以至在这个世界上无论什么事情里都包含有极大或极小的道理.,-Euler,实例:某商店卖两种牌子的果汁,本地牌子每瓶进价1元,外地牌子每瓶进价1.2元,店主估计,如果本地牌子的每瓶卖 元,外地牌子的每瓶卖 元,则每天可卖出 瓶本地牌子的果汁, 瓶外地牌子的果汁问:店主每天以什么价格卖两种牌子的果汁可取得最大收益?,每天的收益为,求最大收益即为求二元函数的最大值.,一、问题的提出,二、多元函数的极值和最值,播放,1、二元函数极值的定义,(1),(2),(3),例1,例,例,定理1(必要条件),函数,偏导数,Proof:,据一元函数极值的必要条件可知定理结论成立.,取得极值 ,取得极值,取得极值,且在该点取得极值 ,则有,存在,故,机动 目录 上页 下页 返回 结束,2、多元函数取得极值的条件,仿照一元函数,凡能使一阶偏导数同时为零的点,均称为函数的驻点.,驻点,极值点,Problem:如何判定一个驻点是否为极值点?,注意:,在点 (0,0) 有极大值,(0,0)不是驻点,回忆 (极值第二判别法),二阶导数 , 且,则 在点 取极大值 ;,则 在点 取极小值 .,对于二元函数,我们能否给出类似的判别法?,时, 具有极值,定理2(充分条件),的某邻域内具有一阶和二阶连续偏导数, 且,令,则: 1) 当,A0 时取极大值;,A0 时取极小值.,2) 当,3) 当,时, 没有极值.,时, 不能确定 , 需另行讨论.,若函数,机动 目录 上页 下页 返回 结束,例4.,求函数,解: 第一步 求驻点.,得驻点: (1, 0) , (1, 2) , (3, 0) , (3, 2) .,第二步 判别.,(1)在点(1,0) 处,为极小值;,解方程组,的极值.,求二阶偏导数,机动 目录 上页 下页 返回 结束,(3)在点(3,0) 处,不是极值;,(4)在点(3,2) 处,为极大值.,(2)在点(1,2) 处,不是极值;,机动 目录 上页 下页 返回 结束,例5.讨论函数,及,是否能取得极值.,解: 显然 (0,0) 都是它们的驻点 ,在(0,0)点邻域内的取值, 因此 z(0,0) 不是极值.,因此,为极小值.,正,负,0,在点(0,0),并且在 (0,0) 都有,可能为,机动 目录 上页 下页 返回 结束,3、多元函数的最值,函数 f 在闭域上连续,函数 f 在闭域上可达到最值,最值可疑点,驻点,边界上的最值点,特别, 当区域内部最值存在, 且只有一个极值点P 时,为极小 值,为最小 值,(大),(大),依据,机动 目录 上页 下页 返回 结束,例6.,解: 设水箱长,宽分别为 x , y m ,则高为,则水箱所用材料的面积为,令,得驻点,某厂要用铁板做一个体积为2,根据实际问题可知最小值在定义域内应存在,的有盖长方体水,问当长、宽、高各取怎样的尺寸时, 才能使用料最省?,因此可,断定此唯一驻点就是最小值点.,即当长、宽均为,高为,时, 水箱所用材料最省.,机动 目录 上页 下页 返回 结束,例7. 有一宽为 24cm 的长方形铁板 ,把它折起来做成,解: 设折起来的边长为 x cm,则断面面积,一个断面为等腰梯形的水槽,倾角为 ,积最大.,为,问怎样折法才能使断面面,机动 目录 上页 下页 返回 结束,令,解得:,由题意知,最大值在定义域D 内达到,而在域D 内只有,一个驻点,故此点即为所求.,机动 目录 上页 下页 返回 结束,解,如图,实例: 小王有200元钱,他决定用来购买两种急需物品:计算机磁盘和录音磁带,设他购买 张磁盘, 盒录音磁带达到最佳效果,效果函数为 设每张磁盘8元,每盒磁带10元,问他如何分配这200元以达到最佳效果,问题的实质:求 在条件 下的极值点,三、条件极值拉格朗日乘数法,极值问题,无条件极值:,条 件 极 值 :,条件极值的求法:,方法1 代入法.,求一元函数,的无条件极值问题,对自变量只有定义域限制,对自变量除定义域限制外,还有其它条件限制,例如 ,机动 目录 上页 下页 返回 结束,方法2 拉格朗日乘数法(Lagrange Multipliers).,例9.,要设计一个容量为,则问题为求x , y ,令,解方程组,解: 设 x , y , z 分别表示长、宽、高,下水箱表面积,最小.,z 使在条件,水箱长、宽、高等于多少时所用材料最省?,的长方体开口水箱, 试问,机动 目录 上页 下页 返回 结束,得唯一驻点,由题意可知合理的设计是存在的,长、宽为高的 2 倍时,所用材料最省.,因此 , 当高为,机动 目录 上页 下页 返回 结束,Question:,1) 当水箱封闭时, 长、宽、高的尺寸如何?,Hint: 利用对称性可知,2) 当开口水箱底部的造价为侧面的二倍时, 欲使造价,最省, 应如何设拉格朗日函数? 长、宽、高尺寸如何?,Hint:,长、宽、高尺寸相等 .,解,则,解,可得,即,多元函数的极值,拉格朗日乘数法,(取得极值的必要条件、充分条件),多元函数的最值,四、小结,思考题,思考题解答,练 习 题,练习题答案,第十节,复习 目录 上页 下页 返回 结束,一、空间曲线的切线与法平面,二、空间曲面的切平面与法线,多元函数微分学的几何应用,三、小结 思考题,设空间曲线的方程,(1)式中的三个函数均可导.,一、空间曲线的切线与法平面,考察割线趋近于极限位置切线的过程,上式分母同除以,割线 的方程为,曲线在M处的切线方程,切向量:切线的方向向量称为曲线的切向量.,法平面:过M点且与切线垂直的平面.,解,切线方程,法平面方程,例2.,求圆柱螺旋线,对应点处的切线方程和法平面方程.,切线方程,法平面方程,即,即,解: 由于,对应的切向量为,在,机动 目录 上页 下页 返回 结束, 故,1.空间曲线方程为,法平面方程为,特殊地:,2.空间曲线方程为,切线方程为,法平面方程为,所求切线方程为,法平面方程为,设曲面方程为,曲线在M处的切向量,在曲面上任取一条通过点M的曲线,二、曲面的切平面与法线,机动 目录 上页 下页 返回 结束,在 上,得,令,由于曲线 的任意性 ,表明这些切线都在以,为法向量,的平面上 ,称此平面为该点的切平面,从而切平面存在 .,曲面 在点 M 的法向量,法线方程,切平面方程,复习 目录 上页 下页 返回 结束,曲面,时,则在点,故当函数,法线方程,令,特别, 当光滑曲面 的方程为显式,在点,有连续偏导数时,切平面方程,机动 目录 上页 下页 返回 结束,法向量,用,将,法向量的方向余弦:,表示法向量的方向角,并假定法向量方向,分别记为,则,向上,复习 目录 上页 下页 返回 结束,切平面上点的竖坐标的增量,因为曲面在M处的切平面方程为,解,切平面方程为,法线方程为,解,令,切平面方程,法线方程,解,设 为曲面上的切点,切平面方程为,依题意,切平面方程平行于已知平面,得,因为 是曲面上的切点,,所求切点为,满足方程,切平面方程(1),切平面方程(2),例4. 确定正数 使曲面,在点,解: 二曲面在 M 点的法向量分别为,二曲面在点 M 相切, 故,又点 M 在球面上,于是有,相切.,与球面,机动 目录 上页 下页 返回 结束, 因此有,解,令,故,方向余弦为,故,解,可得,即,1. 空间曲线的切线与法平面,切线方程,法平面方程,1) 参数式情况.,空间光滑曲线,切向量,内容小结,机动 目录 上页 下页 返回 结束,切线方程,法平面方程,空间光滑曲线,切向量,2) 一般式情况.,机动 目录 上页 下页 返回 结束,空间光滑曲面,曲面 在点,法线方程,1) 隐式情况 .,的法向量,切平面方程,2. 曲面的切平面与法线,机动 目录 上页 下页 返回 结束,空间光滑曲面,

    注意事项

    本文(多元函数微分学全章(高数ppt课件)超经典.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开