欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    高等数学课件D54反常积分.ppt

    • 资源ID:1886887       资源大小:509.51KB        全文页数:21页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高等数学课件D54反常积分.ppt

    ,二、无界函数的反常积分,第四节,常义积分,积分限有限,被积函数有界,推广,一、无穷限的反常积分,机动 目录 上页 下页 返回 结束,反常积分,(广义积分),反常积分,第五章,一、无穷限的反常积分,引例. 曲线,和直线,及 x 轴所围成的开口曲,边梯形的面积,可记作,其含义可理解为,机动 目录 上页 下页 返回 结束,定义1. 设,若,存在 ,则称此极限为 f (x) 的无穷限反常积分,记作,这时称反常积分,收敛 ;,如果上述极限不存在,就称反常积分,发散 .,类似地 , 若,则定义,机动 目录 上页 下页 返回 结束,则定义,( c 为任意取定的常数 ),只要有一个极限不存在 , 就称,发散 .,无穷限的反常积分也称为第一类反常积分.,并非不定型 ,说明: 上述定义中若出现,机动 目录 上页 下页 返回 结束,它表明该反常积分发散 .,引入记号,则有类似牛 莱公式的计算表达式 :,机动 目录 上页 下页 返回 结束,例1. 计算反常积分,解:,机动 目录 上页 下页 返回 结束,思考:,分析:,原积分发散 !,注意: 对反常积分, 只有在收敛的条件下才能使用,“偶倍奇零” 的性质,否则会出现错误 .,例2. 证明第一类 p 积分,证:当 p =1 时有,当 p 1 时有,当 p 1 时收敛 ; p1,时发散 .,因此, 当 p 1 时, 反常积分收敛 , 其值为,当 p1 时, 反常积分发散 .,机动 目录 上页 下页 返回 结束,例3. 计算反常积分,解:,机动 目录 上页 下页 返回 结束,二、无界函数的反常积分,引例:曲线,所围成的,与 x 轴, y 轴和直线,开口曲边梯形的面积,可记作,其含义可理解为,机动 目录 上页 下页 返回 结束,定义2. 设,而在点 a 的右邻域内无界,存在 ,这时称反常积分,收敛 ;,如果上述极限不存在,就称反常积分,发散 .,类似地 , 若,而在 b 的左邻域内无界,若极限,数 f (x) 在 a , b 上的反常积分, 记作,则定义,机动 目录 上页 下页 返回 结束,则称此极限为函,若被积函数在积分区间上仅存在有限个第一类,说明:,而在点 c 的,无界函数的积分又称作第二类反常积分,无界点常称,邻域内无界 ,为瑕点(奇点) .,例如,机动 目录 上页 下页 返回 结束,间断点,而不是反常积分.,则本质上是常义积分,则定义,注意: 若瑕点,的计算表达式 :,则也有类似牛 莱公式的,若 b 为瑕点, 则,若 a 为瑕点, 则,若 a , b 都为瑕点, 则,则,可相消吗?,机动 目录 上页 下页 返回 结束,下述解法是否正确:, 积分收敛,例4. 计算反常积分,解: 显然瑕点为 a , 所以,原式,机动 目录 上页 下页 返回 结束,例5. 讨论反常积分,的收敛性 .,解:,所以反常积分,发散 .,例6. 证明反常积分,证: 当 q = 1 时,当 q 1 时收敛 ; q1,时发散 .,当 q1 时,所以当 q 1 时, 该广义积分收敛 , 其值为,当 q 1 时, 该广义积分发散 .,机动 目录 上页 下页 返回 结束,例7.,解:,求,的无穷间断点,故 I 为反常,积分.,机动 目录 上页 下页 返回 结束,内容小结,1. 反常积分,积分区间无限,被积函数无界,常义积分的极限,2. 两个重要的反常积分,机动 目录 上页 下页 返回 结束,说明: (1) 有时通过换元 , 反常积分和常义积分可以互,相转化 .,例如 ,(2) 当一题同时含两类反常积分时,机动 目录 上页 下页 返回 结束,应划分积分区间,分别讨论每一区间上的反常积分.,(3) 有时需考虑主值意义下的反常积分. 其定义为,P256 题 1 (1) , (2) , (7) , (8),机动 目录 上页 下页 返回 结束,常积分收敛 .,注意: 主值意义下反常积分存在不等于一般意义下反,思考与练习,P256 1 (4) , (5) , (6) , (9) , (10) ; 2 ; 3,第五节 目录 上页 下页 返回 结束,提示: P256 题2,求其最大值 .,作业,备用题 试证, 并求其值 .,解:,令,机动 目录 上页 下页 返回 结束,机动 目录 上页 下页 返回 结束,

    注意事项

    本文(高等数学课件D54反常积分.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开