欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPTX文档下载  

    实际问题与二次函数第一课时ppt课件.pptx

    • 资源ID:1886480       资源大小:503.56KB        全文页数:13页
    • 资源格式: PPTX        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    实际问题与二次函数第一课时ppt课件.pptx

    复习回顾,1、 二次函数y=2(x-3)2+5的对称轴是 ,顶点坐标是 .当x= 时,y的最 值是 .2、二次函数y=2x2-8x+9的对称轴是 ,顶点坐标是 .当x= 时,函数有最_ 值,是 .,x=3,(3,5),3,小,5,x=2,(2,1),2,大,1,22.3实际问题与二次函数第一课时,学习目标,能够分析和表示实际问题中变量之间的关系.,会运用二次函数的知识求出实际问题中的最大(小)值.,体会二次函数是刻画现实世界的有效模型.,问题: 从地面竖直向上抛出一个小球,小球的高度 h(单位:m)与小球的运动时间 t(单位:s)之间的关系是 h=30t-5t(0t6). 小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少?,合作学习,(1)图中抛物线的顶点在哪里?(2)这个抛物线的顶点是否是小球运动的最高点?(3)小球运动至最高点的时间是什么时间?(4)通过前面的学习,你认为小球运行轨迹的顶点坐标是什么?,h=30t-5t(0t6),3,45,合作学习,小球运动的时间是 3 s 时,小球最高小球运动中的最大高度是 45 m,问题: 从地面竖直向上抛出一个小球,小球的高度 h(单位:m)与小球的运动时间 t(单位:s)之间的关系是 h=30t-5t(0t6). 小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少?,合作学习,由于抛物线 y = ax 2 + bx + c 的顶点是最低(高)点,当 时,二次函数 y = ax 2 + bx + c 有最小(大) 值,如何求出二次函数 y = ax 2 + bx + c 的最小(大)值?,合作学习,问题1.已知某商品的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件。已知商品进价为每件40元,该商品应定价为多少元时,商场能获得最大利润?,问题2.已知某商品的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每降价1元,每星期要多卖出20件。已知商品进价为每件40元,该商品应定价为多少元时,商场能获得最大利润?,某商品的售价为每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期要多卖出20件。已知商品进价为每件40元,如何定价才能使利润最大?,合作学习,解:设每件涨价为x元时获得的总利润为y元.,y =(60-40+x)(300-10 x) =(20+x)(300-10 x) =-10 x2+100 x+6000 =-10(x2-10 x ) +6000 =-10(x-5)2-25 +6000 =-10(x-5)2+6250,当x=5时,y的最大值是6250.,定价:60+5=65(元),(0 x30),怎样确定x的取值范围,问题1、已知某商品的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件。已知商品进价为每件40元,该商品应定价为多少元时,商场能获得最大利润?,合作学习,解:设每件降价x元时的总利润为y元.,y=(60-40-x)(300+20 x) =(20-x)(300+20 x) =-20 x2+100 x+6000 =-20(x2-5x-300) =-20(x-2.5)2+6125 所以定价为60-2.5=57.5时利润最大,最大值为6125元.,答:综合以上两种情况,定价为65元时可 获得最大利润为6250元.,怎样确定x的取值范围,合作学习,问题2、已知某商品的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每降价1元,每星期要多卖出20件。已知商品进价为每件40元,该商品应定价为多少元时,商场能获得最大利润?,(0 x20),1、将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个若这种商品的零售价在一定范围内每降价1元,其日销售量就增加了1个,为了获得最大利润,则应降价多少元?最大利润为多少元?,反馈,某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元;市场调查发现,若每箱以45元的价格销售,平均每天销售105箱;每箱以50元的价格销售,平均每天销售90箱,假定每天销售量y(箱)与销售价x(元/箱)之间满足一次函数关系式。(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式;(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式;(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?,反馈,小结,1、如何求二次函数的最小(大)值,并利用其解决实际问题?2、在解决问题的过程中应注意哪些问题?你学到了哪些思考问题的方法?,

    注意事项

    本文(实际问题与二次函数第一课时ppt课件.pptx)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开