空间几何体的结构ppt课件).ppt
空间几何体的结构,第1课时,如果我们只考虑物体的形状和大小,而不考虑其它因素,那么由这些物体抽象出来的空间图形就叫做空间几何体。,空间几何体,你能把这些几何体分成几类么?,空间几何体,多面体,旋转体,棱锥,棱台,棱柱,圆台,圆柱,圆锥,球,多面体: 若干个平面多边形围成的几何体 面-围成多面体的各个多边形 棱-相邻两个面的公共边 顶点-棱与棱的公共点,旋转体: 由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体,注:棱柱与圆柱统称为柱体,1.棱柱的结构特征:,有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共边互相平行,由这些面围成的图形叫做棱柱,有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共边互相平行,1、棱柱,棱柱的表示法:用表示底面的各顶点的字母表示。 如:六棱柱ABCDEF-ABCDEF,棱柱:有两个面互相平行(底面),其余各面都是四边形(侧面),每相邻两个侧面的公共边(侧棱)都互相平行的柱体。底面两个互相平行的面侧面除开底面其余各面侧棱相邻侧面的公共边顶点侧面与底面的公共顶点 底面是三角形、四边形、五边形的棱柱分别叫三棱柱 、四棱柱、五棱柱,例: 如图,截面BCEF将长方体分割成两部分,这两部分是否为棱柱?,2.棱锥的结构特征:,有一个面是多边形,其余各面都是 有一个公共顶点的三角形。,棱锥的分类: 按底面多边形的边数,可以分为三棱锥、四棱锥、五棱锥、,棱锥的表示法:棱锥S-ABCD,D,A,C,B,S,是四棱锥:S-ABCD,其余三角形面没有一个共同顶点,练习:下列几何体是不是棱锥,为什么?,3.棱台的结构特征,用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台.,底面是三角形,四边形,五边形-的棱台分别叫三棱台,四棱台,五棱台-,下底面和上底面:原棱锥的底面和截面 分别叫做棱台的下底面和上底面。,侧面:原棱锥的侧面也叫做棱台的侧面(截后剩余部分)。,侧棱:原棱锥的侧棱也叫棱台的侧棱(截后剩余部分)。,顶点:上底面和侧面,下底面和侧面的公共点叫做棱台的顶点。,练习:下列几何体是不是棱台,为什么?, 不能还原为棱锥(侧棱延长线不交于一点), 截面不与底面平行,探究问题 3:,两个底面平行且相似,其余各面都是梯形的几何体一定是棱台吗?,注意:(1)截面与底面平行,S,(2)通过延长侧棱,能够还原为棱锥的才是棱台,四棱台ABCD-ABCD,1.下面几何体中哪些是棱柱?,巩固习题:,2.如图,螺丝杆头部是什么几何体?它有几对平行平面? 能作为底面的有几对?,3.下图中不可能围成正方体的是( ),B,第2课时,B,A,A,O,B,O,4.圆柱的结构特征,圆柱用表示它的轴的字母表示.如:圆柱OO,以矩形的一边所在直线为旋转轴,其余边旋转形成的面所围成的旋转体叫做圆柱。,圆柱的轴:旋转轴叫做圆柱的轴。,圆柱侧面的母线:无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。,圆柱的侧面:平行于轴的边旋转而成的曲面叫做圆的侧面。,圆柱的底面:垂直于轴的边旋转而成的圆面叫做圆柱的底面。,注:棱柱与圆柱统称为柱体,S,A,B,O,5.圆锥的结构特征:,以直角三角形的一条直角边所在直线为旋转轴, 两余边旋转形成的面所围成的旋转体叫做圆锥。,圆锥可以用它的轴来表示。如:圆锥SO,轴:作为旋转轴的直角边叫做圆锥的轴。,母线:无论旋转到什么位置,直角三角形的斜边叫做圆锥的母线。,顶点:作为旋转轴的直角边与斜边的交点,侧面:直角三角形斜边旋转形成的曲面叫做圆锥的侧面。,底面:另外一条直角边旋转形成的圆面叫做圆锥的底面。,注:棱锥与圆锥统称为锥体,6.圆台的结构特征,用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分是圆台.,A,B,圆台的轴,底面,侧面,母线与圆锥相似,注:棱台与圆台统称为台体。,7、球的结构特征,以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的几何体叫做球体。,半径:半圆的半径叫做球的半径。,球心:半圆的圆心叫做球的球 心。,直径:半圆的直径叫做球的直径。,球的表示:用球心字母表示如:球O,小结:,棱锥,棱柱,圆锥,圆柱,圆台,考一考:,空间几何体,多面体,旋转体,棱锥,棱台,棱柱,圆台,圆柱,圆锥,锥体,台体,柱体,球,棱台,球,谢谢!,