欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    金融时间序列分析 第2部分 时间序列分析基础5.1 ARMA建模过程课件.ppt

    • 资源ID:1851102       资源大小:4.42MB        全文页数:77页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    金融时间序列分析 第2部分 时间序列分析基础5.1 ARMA建模过程课件.ppt

    金融时间序列分析,陆贵斌2012年10月,1,建模过程,2,内容,3,一、ARMA建模,建模步骤模型识别参数估计模型检验模型优化序列预测,4,建模步骤,平稳非白噪声序列,计算样本相关系数,模型识别,参数估计,模型检验,模型优化,序列预测,Y,N,5,计算样本相关系数,样本自相关系数,样本偏自相关系数,6,模型识别,基本原则,7,模型定阶的困难,因为由于样本的随机性,样本的相关系数不会呈现出理论截尾的完美情况,本应截尾的 或 仍会呈现出小值振荡的情况由于平稳时间序列通常都具有短期相关性,随着延迟阶数 , 与 都会衰减至零值附近作小值波动当 或 在延迟若干阶之后衰减为小值波动时,什么情况下该看作为相关系数截尾,什么情况下该看作为相关系数在延迟若干阶之后正常衰减到零值附近作拖尾波动呢?,8,样本相关系数的近似分布,BarlettQuenouille,9,模型定阶经验方法,95的置信区间模型定阶的经验方法如果样本(偏)自相关系数在最初的d阶明显大于两倍标准差范围,而后几乎95的自相关系数都落在2倍标准差的范围以内,而且通常由非零自相关系数衰减为小值波动的过程非常突然。这时,通常视为(偏)自相关系数截尾。阶数为d。,10,例2,选择合适的模型ARMA拟合1950年1998年北京市城乡居民定期储蓄比例序列。,11,序列自相关图,12,序列偏自相关图,13,拟合模型识别,自相关图显示延迟3阶之后,自相关系数全部衰减到2倍标准差范围内波动,这表明序列明显地短期相关。但序列由显著非零的相关系数衰减为小值波动的过程相当连续,相当缓慢,该自相关系数可视为不截尾 偏自相关图显示除了延迟1阶的偏自相关系数显著大于2倍标准差之外,其它的偏自相关系数都在2倍标准差范围内作小值随机波动,而且由非零相关系数衰减为小值波动的过程非常突然,所以该偏自相关系数可视为一阶截尾 所以可以考虑拟合模型为AR(1),14,例2,美国科罗拉多州某一加油站连续57天的OVERSHORT序列,15,序列自相关图,16,序列偏自相关图,17,拟合模型识别,自相关图显示除了延迟1阶的自相关系数在2倍标准差范围之外,其它阶数的自相关系数都在2倍标准差范围内波动。根据这个特点可以判断该序列具有短期相关性,进一步确定序列平稳。同时,可以认为该序列自相关系数1阶截尾偏自相关系数显示出典型非截尾的性质。综合该序列自相关系数和偏自相关系数的性质,为拟合模型定阶为MA(1),18,例3,1880-1985全球气表平均温度改变值差分序列,19,序列自相关图,20,序列偏自相关图,21,拟合模型识别,自相关系数显示出不截尾的性质偏自相关系数也显示出不截尾的性质综合该序列自相关系数和偏自相关系数的性质,可以尝试使用ARMA(1,1)模型拟合该序列,22,参数估计,待估参数 个未知参数常用估计方法矩估计极大似然估计最小二乘估计,23,矩估计,原理样本自相关系数估计总体自相关系数样本一阶均值估计总体均值,样本方差估计总体方差,24,例4: 求AR(2)模型系数的矩估计,AR(2)模型Yule-Walker方程矩估计(Yule-Walker方程的解),25,例5: 求MA(1)模型系数的矩估计,MA(1)模型方程矩估计,26,例6: 求ARMA(1,1)模型系数的矩估计,ARMA(1,1)模型方程矩估计,27,对矩估计的评价,优点估计思想简单直观不需要假设总体分布计算量小(低阶模型场合)缺点信息浪费严重只用到了p+q个样本自相关系数信息,其他信息都被忽略估计精度差通常用作极大似然估计和最小二乘估计迭代计算的初始值,28,极大似然估计,原理在极大似然准则下,认为样本来自使该样本出现概率最大的总体。使得似然函数(即联合密度函数)达到最大的参数值,29,似然方程,30,对极大似然估计的评价,优点充分应用了每一个观察值所提供的信息,估计精度高优良的统计性质: 估计的一致性、渐近正态性和渐近有效性缺点需要假定总体分布,31,最小二乘估计,原理使残差平方和达到最小的那组参数值即为最小二乘估计值,32,对最小二乘估计的评价,优点最小二乘估计充分应用了每一个观察值所提供的信息,因而它的估计精度高缺点需要假定总体分布,33,模型检验,模型的显著性检验整个模型对信息的提取是否充分参数的显著性检验模型结构是否最简,34,模型的显著性检验,目的检验模型的有效性(对信息的提取是否充分)检验对象残差序列判定原则一个好的拟合模型:能够提取观察值序列中几乎所有的样本相关信息,即残差序列应该为白噪声序列 反之: 残差序列中还残留着相关信息未被提取,拟合模型不够有效,35,假设条件,原假设:残差序列为白噪声序列备择假设:残差序列为非白噪声序列,36,检验统计量,LB统计量,37,例,检验1950年1998年北京市城乡居民定期储蓄比例序列拟合模型的显著性 残差白噪声序列检验结果,38,参数显著性检验,目的检验每一个未知参数是否显著非零。删除不显著参数使模型结构最精简 假设条件检验统计量,39,例,检验1950年1998年北京市城乡居民定期储蓄比例序列极大似然估计模型的参数是否显著 参数检验结果,40,例 : 对OVERSHORTS序列的拟合模型进行检验,残差白噪声检验参数显著性检验,41,模型优化,问题提出当一个拟合模型通过了检验,说明在一定的置信水平下,该模型能有效地拟合观察值序列,但这种有效模型并不是唯一的。优化的目的选择相对最优模型,42,例 : 拟合某一化学序列,43,序列自相关图,44,序列偏自相关图,45,拟合模型一,根据自相关系数 2 阶截尾,拟合 MA(2) 模型参数估计模型检验模型显著有效 三参数均显著,46,拟合模型二,根据偏自相关系数1阶截尾,拟合 AR(1) 模型参数估计模型检验模型显著有效 两参数均显著,47,问题,同一个序列可以构造两个拟合模型,两个模型都显著有效,那么到底该选择哪个模型用于统计推断呢? 解决办法确定适当的比较准则,构造适当的统计量,确定相对最优,48,AIC准则,最小信息量准则(An Information Criterion) 指导思想似然函数值越大越好 未知参数的个数越少越好 AIC统计量,49,SBC准则,AIC准则的缺陷在样本容量趋于无穷大时,由AIC准则选择的模型不收敛于真实模型,它通常比真实模型所含的未知参数个数要多 SBC统计量,50,例,用AIC准则和SBC准则评判 两个拟合模型的相对优劣 结果AR(1)优于MA(2),51,序列预测,线性预测函数预测方差最小原则,52,MA序列分解,预测误差,预测值,53,误差分析,估计误差期望方差,54,AR(p)序列的预测,预测值预测方差95置信区间,55,例,已知某超市月销售额近似服从AR(2)模型(单位:万元/每月)今年第一季度该超市月销售额分别为:101,96,97.2万元请确定该超市第二季度每月销售额的95的置信区间,56,例 :预测值计算,四月份五月份六月份,57,例 :预测方差的计算,GREEN函数方差,58,例 :置信区间,公式估计结果,59,例 北京市城乡居民定期储蓄比例序列拟合与预测图,60,MA(q)序列的预测,预测值预测方差,61,例,已知某地区每年常驻人口数量近似服从MA(3)模型(单位:万):最近3年的常驻人口数量及一步预测数量如下:预测未来5年该地区常住人口的95置信区间,62,例 随机扰动项的计算,63,例 :估计值的计算,64,例:预测方差的计算,65,例:置信区间的计算,66,ARMA(p,q)序列预测,预测值预测方差,67,例,已知模型为:且 预测未来3期序列值的95的置信区间。,68,例:估计值的计算,69,例 预测方差的计算,Green函数方差,70,例:置信区间的计算,71,修正预测,定义所谓的修正预测就是研究如何利用新的信息去获得精度更高的预测值 方法在新的信息量比较大时把新信息加入到旧的信息中,重新拟合模型 在新的信息量很小时不重新拟合模型,只是将新的信息加入以修正预测值,提高预测精度,72,修正预测原理,在旧信息的基础上, 的预测值为假设新获得一个观察值 ,则 的修正预测值为修正预测误差为预测方差为,73,一般情况,假设新获得 p 个观察值 ,则 的修正预测值为修正预测误差为预测方差为,74,例,假如四月份的真实销售额为100万元,求二季度后两个月销售额的修正预测值计算四月份的预测误差计算修正预测值计算修正方差,75,修正置信区间,76,Thank You !,77,

    注意事项

    本文(金融时间序列分析 第2部分 时间序列分析基础5.1 ARMA建模过程课件.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开