XXXX01风险分析及方法简述.docx
风险分析及方法简述(中英文)1 Basic Risk Management Facilitation Methods 基本的风险管理的便利方法Some of the simple techniques that are commonly used to structure risk management by organizing data and facilitating decision-making are: 下面是一些简单的通常使用的方法,进行风险管理和制定决策:Ø Flowcharts/流程图Ø Check Sheets/检查清单Ø Process Mapping/过程图Ø Cause and Effect Diagrams (also called an Ishikawa diagram or fish bone diagram)/因果图(或者叫鱼骨图)2 Failure Mode Effects Analysis (FMEA) 失效模式与效果分析2.1 Describe/描述FMEA (see IEC 60812) provides for an evaluation of potential failure modes for processes and their likely effect on outcomes and/or product performance. Once failure modes are established, risk reduction can be used to eliminate, contain, reduce or control the potential failures. FMEA relies on product and process understanding. FMEA methodically breaks down the analysis of complex processes into manageable steps. It is a powerful tool for summarizing the important modes of failure, factors causing these failures and the likely effects of these failures. FMEA提供了工艺潜在失效模式的评估和对产品性能或结果的潜在影响。一旦将建立了失效模式,风险的降低可被用来消除、囊括、降低或控制潜在的失效活动。FMEA依赖于对产品和工艺的理解。FMEA将复杂的工艺系统地分解为简单的步骤。FMEA对重要的失效模式、引起失效的因素以及失效可能带来的后果进行汇总的有力工具。2.2 Potential Areas of Use(s) 使用的潜在区域FMEA can be used to prioritize risks and monitor the effectiveness of risk control activities. FMEA可用来安排风险的优先顺序,监控风险控制活动的有效性。FMEA can be applied to equipment and facilities and might be used to analyze a manufacturing operation and its effect on product or process. It identifies elements/operations within the system that render it vulnerable. The output/ results of FMEA can be used as a basis for design or further analysis or to guide resource deployment. FMEA可用于设备和设施,也可用于分析某一生产操作及其对产品或工艺的影响。它可识别系统内的元素/操作的弱点。FMEA的结果可被作为设计或深入分析或指导资源配置的依据。3 Failure Mode, Effects and Criticality Analysis (FMECA) 失效模式、效果与关键程度的分析3.1 Describe/描述FMEA might be extended to incorporate an investigation of the degree of severity of the consequences, their respective probabilities of occurrence, and their detectability, thereby becoming a Failure Mode Effect and Criticality Analysis (FMECA; see IEC 60812). In order for such an analysis to be performed, the product or process specifications should be established. FMECA can identify places where additional preventive actions might be appropriate to minimize risks. FMEA可以延伸到结果严重程度的调查、发生的概率和可检测性,发展为FMECA。为执行这样的分析,应建立产品或工艺的质量标准。FMECA可以鉴定何时采用预防措施可以将风险家最小化。3.2 Potential Areas of Use(s) 使用的潜在区域FMECA application in the pharmaceutical industry should mostly be utilized for failures and risks associated with manufacturing processes; however, it is not limited to this application. The output of an FMECA is a relative risk “score” for each failure mode, which is used to rank the modes on a relative risk basis.制药企业的FMECA应最大的利用与生产工艺相联系的失效和风险,但是不局限于这一应用。FMECA的结果是每一风险模式的相对的风险“中心”,用来分级相对风险根据。4 Fault Tree Analysis (FTA) 失误树分析4.1 Describe/描述The FTA tool (see IEC 61025) is an approach that assumes failure of the functionality of a product or process. This tool evaluates system (or sub-system) failures one at a time but can combine multiple causes of failure by identifying causal chains. The results are represented pictorially in the form of a tree of fault modes. At each level in the tree, combinations of fault modes are described with logical operators (AND, OR, etc.). FTA relies on the experts process understanding to identify causal factors. 失误树分析是假定产品或工艺性能的失效的方法。这些工具评估系统失效,但是可以结合失效的多种原因。在树的每一个水平内,应描述失效模式的结合。FTA依赖于专家的工艺理解去鉴别起因。4.2 Potential Areas of Use(s) 潜在区域的使用FTA can be used to establish the pathway to the root cause of the failure. FTA can be used to investigate complaints or deviations in order to fully understand their root cause and to ensure that intended improvements will fully resolve the issue and not lead to other issues (i.e. solve one problem yet cause a different problem). Fault Tree Analysis is an effective tool for evaluating how multiple factors affect a given issue. The output of an FTA includes a visual representation of failure modes. It is useful both for risk assessment and in developing monitoring programs. FTA可用于建立失效起因的途径。FTA可用于调查投诉或偏差,以便全面理解它们的起因,确保预定的改进能全面解决争议,并且不会导致其他的争议(例如:解决完一个问题但是引起了其他的问题)。失误树分析是评估多种因素怎样影响争议的有效的工具。失误树分析的结果包括失效模式的可见的代表。这对风险评估和发展监控系统是有用的。5 Hazard Analysis and Critical Control Points (HACCP) 危害分析和关键控制点5.1 Describe/描述HACCP is a systematic, proactive, and preventive tool for assuring product quality, reliability, and safety (see WHO Technical Report Series No 908, 2003 Annex 7). It is a structured approach that applies technical and scientific principles to analyze, evaluate, prevent, and control the risk or adverse consequence(s) of hazard(s) due to the design, development, production, and use of products. HACCP是确保产品质量、可靠性和安全(见WHO技术报告系列)系统的、积极的、预防性的工具。它是一综合性的方法,运用技术和科学的原则去分析、评估、预防和控制由药品的设计、研发、生产、风险和使用引起的风险或危害的后果。HACCP consists of the following seven steps: HACCP包括以下七个步骤:(1) conduct a hazard analysis and identify preventive measures for each step of the process; 执行危害分析,确定过程每一步骤的预防性措施(2) determine the critical control points; 决定关键控制点(3) establish critical limits; 设立关键限度(4) establish a system to monitor the critical control points; 设定监测关键控制点的系统。(5) establish the corrective action to be taken when monitoring indicates that the critical control points are not in a state of control; 设立关键控制不受控时的采取的整改措施(6) establish system to verify that the HACCP system is working effectively; 设立证实HACCP有效工作的系统(7) establish a record-keeping system. 设定记录保持的系统5.2 Potential Areas of Use(s) 使用的潜在的区域HACCP might be used to identify and manage risks associated with physical, chemical and biological hazards (including microbiological contamination). HACCP is most useful when product and process understanding is sufficiently comprehensive to support identification of critical control points. The output of a HACCP analysis is risk management information that facilitates monitoring of critical points not only in the manufacturing process but also in other life cycle phases.HACCP可被用来证实和控制与物理、化学和生物危害(包括微生物的污染)有关的风险。当有全面的产品和工艺理解支持关键控制点的识别时,HACCP是最有用的工具。HACCP分析的结果是风险管理的信息,它便于生产工艺和其他生命周期阶段的关键控制点。6 Hazard Operability Analysis (HAZOP) 危害与可操作性/运行分析6.1 Describe/描述HAZOP (see IEC 61882) is based on a theory that assumes that risk events are caused by deviations from the design or operating intentions. It is a systematic brainstorming technique for identifying hazards using so-called “guide-words”. “Guide-words” (e.g., No, More, Other Than, Part of, etc.) are applied to relevant parameters (e.g., contamination, temperature) to help identify potential deviations from normal use or design intentions. It often uses a team of people with expertise covering the design of the process or product and its application. HAZOP基于这样的理论假定来自设计和操作的偏差引来了风险事件。这是系统的鉴定危害的头脑风暴技巧,就是所谓的“指导词”。 “指导词”(非、更多的、而不是,部分)被用于相关的参数(例如:污染、温度),帮助鉴定来自正常使用或设计用途的潜在偏差。通常是利用涵盖工艺或产品的设计和其利用的专家人员。PHA-Pro软件介绍与下载PHA-Prowiki软件/wiki是目前世界上销量第一的分析软件,集合了HAZOP,HACCP,LOPA,FMEA,FTA,ETA,WHATIF等等各种分析引导。通过导航引导分析。发的这个PDF文件希望对大家有所帮助。里面有简单的操作说明。风险管理在药品生产中的应用摘要 简要介绍了国内药品生产企业应用风险管理现状,描述了对风险管理的理解,概述了风险管理的几个应用工具,重点阐述了风险分析常用的失败模式与影响分析(FMEA)方法。 关键词 风险管理;失败模式与影响分析;风险优先数 中图分类号R951 文献标识码B 文章编号1673-7210(2008)12(b)-089-02 21世纪以来,美国食品药品监督管理局等药政管理部门相继提出了以风险管理为基础的药品质量管理概念。ICH Q9(风险管理)的发布正式确定了风险管理的概念,为企业进行风险管理提供了依据及指导。在原料药、制剂、生物制品和生物技术产品的整个产品生命周期内,质量风险管理可以运用于药物质量的所有方面,包括研发、生产、发放和检查及递交评审过程。作为国内药品生产企业,要适应法规的新变化,对生产过程中的药品质量风险进行管理。文中通过对风险概念的理解、风险管理的常用工具以及如何应用等几个方面的问题进行探讨,以期为药品生产企业的生产过程质量风险管理提供参考。1 国内药品生产企业应用风险管理现状随着中国企业国际化和中国市场全球化程度的不断提高,风险管理正日益成为中国企业所面临的重要课题,特别是2006年国资委发布中央企业全面风险管理指引等相关文件以来,中国企业已经全面步入了“风险管理年”。然而,前不久由甫瀚公司委托独立第三方进行的一项名为“中国大陆风险气压计”的调查结果却显示,国内企业风险管理现状不容乐观,无论是在风险承受能力还是风险管理能力上都处于较低水平。 在这项调查中,只有9%的内地上市公司高管表示,其公司在识别和管理所有潜在重大风险方面进行得“非常有效”。这一比例远远低于美国(53%)、英国(37%)以及中国香港(22%)等大多数国家和地区的水平,这清楚地表明中国内地企业在风险管理方面与世界的差距。报告得出的结论显示,内地大型上市公司尽管在资产规模、盈利能力、市场占有率方面成长迅速,但在风险管理能力上表现欠佳,高水平、系统性风险管理架构的普遍缺失已经成为制约中国企业成功走向国际市场的一大因素。对于正加快国际化步伐的中国企业而言,提高风险管理水平已成为增强国际竞争力的当务之急。 2 风险管理的正确理解 通常,风险被理解定义为危害出现的可能性和危害严重性的结合。风险分析即是用以评估和辨别设备或工艺功能关键参数的方法。 风险管理的程序为:风险评估,风险控制,风险交流。具体见表1。 风险评估所得结果是对风险的定量估计,如从0到1(0到 100%),或是对风险范围的定性描述,比如“高”,“中”或“低”。 风险控制的目的在于将风险降低到一个可接受水平。 风险交流是在决策者及其他有关方进行风险及其管理方面信息的交换和共享。 3 风险管理的工具 风险管理的工具共有以下几种:失败模式与影响分析(FMEA );失败模式、影响和关键点分析( FMECA );失败(故障)树状分析法( FTA );危害源分析与关键控制点(HACCP);危险可操作性分析(HAZOP) ;初步危害源分析(PHA) ;风险评级和过滤;支持性统计学分析工具。 其中,FMEA是由美国航天局在阿波罗项目中被开发的,是一种用来确定潜在失效模式及其原因的分析方法。具体来说,通过实行FMEA,可在产品设计或生产工艺真正实现之前发现产品的弱点。FMEA是一种提供了定量评价故障及其潜在隐患的预防性方法,认为是最普通实用形式的风险分析,具体如下:发生几率(probability of occurrence,O);失败的严重程度(severity of the failure,S);检测概率(probability of detection,D)。 对于定量进行的风险评估,三个因素的“发生可能性(O)”、“缺陷的严重性(S)” 和“检测概率(D)”通常赋值为110。这些数值相乘,其结果是风险优先数(RPN)。RPN=O×S×D。 该风险优先数(RPN)从而得到11 000的数值。RPN 最坏的情况是1 000,最好的情况是1。公司在采取降低风险措施的前提下需要决定RPN值,这就要提出风险分析。当再次进行评估时,这些措施应该产生效果,RPN要低于限度值(执行措施后)。它也可以在具体的应用领域进行 (如计算机系统的风险分析)。因此对于风险分析,FMEA是一个非常灵活的方法。 发生几率(O):事件发生的频率,要记录特定的失效原因和机制,多长时间发生一次以及发生的几率。失败发生越频繁,风险越高,如果为10,则表示几乎肯定要发生,会时常发生,发生概率为1代表几乎不会发生。Risk analysis by FMEA as an element of analytical validation References and further reading may be available for this article. To view references and further reading you must purchase this article.J.F. van Leeuwena, c, M.J. Nautab, d, D. de Kastea, Y.M.C.F. Odekerken-Romboutsa, M.T. Oldenhofa, M.J. Vredenbregta, , and D.M. BarendsaaNational Institute for Public Health and the Environment, RIVM, Centre for Quality of Chemical-Pharmaceutical Products, Bilthoven, The NetherlandsbNational Institute for Public Health and the Environment, RIVM, Laboratory for Zoonoses and Environmental Microbiology, Bilthoven, The NetherlandscCurrent affiliation: Medicines Evaluation Board, CBG, The Hague, The NetherlandsdCurrent affiliation: National Food Institute, Danish Technical University (DTU), Søborg, DenmarkReceived 6 April 2009; accepted 28 June 2009. Available online 7 July 2009. AbstractWe subjected a Near-Infrared (NIR) analytical procedure used for screening drugs on authenticity to a Failure Mode and Effects Analysis (FMEA), including technical risks as well as risks related to human failure. An FMEA team broke down the NIR analytical method into process steps and identified possible failure modes for each step. Each failure mode was ranked on estimated frequency of occurrence (O), probability that the failure would remain undetected later in the process (D) and severity (S), each on a scale of 110. Human errors turned out to be the most common cause of failure modes. Failure risks were calculated by Risk Priority Numbers (RPNs) = O × D × S. Failure modes with the highest RPN scores were subjected to corrective actions and the FMEA was repeated, showing reductions in RPN scores and resulting in improvement indices up to 5.0. We recommend risk analysis as an addition to the usual analytical validation, as the FMEA enabled us to detect previously unidentified risks.Keywords: Near-Infrared spectroscopy; Analytical validation; FMEA; Risk analysis; Human factorArticle Outline1. Introduction 2. Materials and methods 3. Results 4. Discussion Acknowledgements References