平面向量数乘运算及其几何意义ppt课件.ppt
2.2.3 向量数乘运算及其几何意义,1.向量加法三角形法则:,特点:首尾顺次连,起点指终点,特点:起点相同,对角为和,特点:平移同起点,方向指被减,2.向量加法平行四边形法则:,3.向量减法三角形法则:,已知非零向量 ,作出 ,你能发现什么?,类比上述结论, 又如何呢?,A,B,C,Q,M,N,与 方向相同,与 方向相反,作一作,看成果,一般地,我们规定实数与向量 的积是一个向量,这种运算叫做向量的数乘,记作 ,它的长度和方向规定如下:,(1),(2)当 时, 的方向与 的方向相同; 当 时, 的方向与 的方向相反。,特别的,当 时,,(1) 根据定义,求作向量3(2a)和(6a) (a为非零向量),并进行比较。,=,向量的数乘运算满足如下运算律:,向量的加、减、数乘运算统称为向量的线性运算,例1、计算下列各式,成立,向量共线定理:,思考:1) 为什么要是非零向量?,2) 可以是零向量吗?, 与 共线,解:,A,B,C,证明三点共线的方法:,总结:,AB=BC,试一试:,且有公共点,A,B,C三点共线,能力提升,设是两个不共线的向量,若A、B、D三点共线,求k的值.,例5.如图,平行四边形ABCD的两条对角线相交于点M,且 ,你能用 、 来表示 。,A,B,D,M,一、a 的定义及运算律 向量共线定理 (a0) b=a 向量a与b共线,二、定理的应用: 1. 证明 向量共线 2. 证明 三点共线: AB=BC 且有公共点 3. 证明 两直线平行: AB=CD AB与CD不在同一直线上,直线AB直线CD,小结:,A,B,C三点共线,ABCD,作业:,书本P91,A组,9,10 B组,3,