SHAININ DOE 七工具介紹1.docx
SHAININ DOE 七工具介紹l Multi-Vari Chart(多層圖)l B vs .C (B與C比較)l Paired Comparisons(成對比較)l Components Search(組件尋找)l Variables Search(變數尋找)l Full Factorials(全因子效果)l Realistic Tolerance Parallelogram (scatter plots)(散佈圖定公差)目的:降低變異MUTI-VARI CHART多層圖:變異之掌握時間面變動(Temporal Variation)在不同的時段、生產班次、生產日期、生產週別等等,由於時間不同製程會發生的品質變異,是一種非隨機性的要因,只要能掌握到它們的存在,伴生的品質變異就可望全數消除。空間面變動(Position Variation)在相同時間裡,在不同的部位、機台、人手或工廠所發生的品質變異,就是所謂的空間要因所產生的。經過恰當對策後,空間面要因所產生的品質變異可望消除大半。以下列舉了各類的空間面要因:l 單品的內變異,如一件鑄品因不同部位孔隙度有差異。l 組品內各單件之間的差異,譬如一塊含千、百只零組件電路機板,各點之問銲錫品質有差異。l 全品之內相同各件之間的差異,譬如一片晶圓上數百粒晶體之間品質出入很大。l 同模或同次生產,各件產品之間的品質差異。譬如在IC的封膠製程,乙付模具上通常有數十處相同的穴位,但產出的各個膠體之間也有所差異。l 不同的作業手、生產機台、或生產工廠投入相同的生產要素,但產品之間也有品質差異。重覆面變動(Cyclic Variation)在同一機台,用同批材料、由同一作業手、按相同程序生產,產品之間仍有品質差異。這種隨機性要因是會再度出現的,所以它們有反覆性。只有在技術上、材料上或設備上等等有所突坡,此類反覆性品質變異才可以減少。討論:請舉出在LCD之製程中,時間之變異有哪些。討論:請舉出在LCD之製程中,空間之變異有哪些。討論:請舉出在LCD之製程中,重覆之變異有哪些。Multi-Vari個案研究:轉子軸某製造廠生產圓柱的轉子軸,需求直徑為0.0250”0.001”,製程能力研究顯示0.0025”的(標準差)散佈,CPK0.8。領班準備廢棄此老式的生產轉子軸的六角車床設備(TURRET LATHE),買一個新的價格為$70,000,能保持0.0008” 的車床,即 Cpk1.25,然而,顧問說服工廠經理先行Multi-Vari 研究,即使在買進新車床前,它的回收只是九個月圖表-顯示Multi-Vari圖的結果l 空間面變動(Position Variation)軸四個位置的(軸內)變動,顯示如方格內,每個軸的左邊到右邊,上下為軸的最大的直徑和最小的直徑l 重覆面變動(Cyclic Variation)循環性的變動,一方格到這下一個方格l 時間面變動(Temporal Variation)從周期到這下一個,以小時顯示l 結論:圖中顯示,最大的變化似乎是時間到時間,變化發生於10上午和11上午,這提供這領班一個強的線索,上午10什麼呢?休息時間!。而在下一個三軸樣本是取在11上午,這些讀數是類似於最初上午生產。變異要因檢討解析例某家瓷磚製造商磁磚褙紙之褙紙黏度品質不易控制,搜集數據如下表(1)橫條之內(每條5片瓷磚)(2)橫條之間(3)時間,另外,將以上數據繪製成 multi-vari charts(包括每條中最高黏度每時段平均黏度、每條平均黏度),如圖 ( 問題) 1那一方面的變因有最大的變異? 2你可以找到什麼端倪? 包括非隨機的趨勢。Multi-Vari Chart 之製作ABCDEFGHIJ112321234567893X16659546057473822564X25658525037601243395X35866594446485418606X46548485044496060587X56763725952565738608最大6766726057606060609最小56484844374712183910平均62.458.85752.647.25244.236.254.611組平均59.459.459.450.650.650.6454545計算各組最大,最小,小平均,大組平均B8格 =MAX(B3.B7)複製B8,至C8.J8B9格 =MIN(B3.B7)複製B9,至C9.J9B10格 =AVERAGE(B3.B7)複製B10,至C10.J10B11格 =AVERAGE(B10.D10)複製B11,選擇貼上(值)至C11.D11複製B11,至E11複製E11,選擇貼上(值)至F11.G11複製E11,至H11複製H11,選擇貼上(值)至I11.J11畫圖分隔之做法ABCDEFGHIJ112321234567893X16659546057473822564X25658525037601243395X35866594446485418606X46548485044496060587X56763725952565738608最大6766726057606060609最小56484844374712183910平均62.458.85752.647.25244.236.254.611組平均59.459.459.450.650.650.6454545練習為瞭解0402印刷寬度之變異,取3個MASK,每MASK作4JIG,每JIG取上下兩PACK,每PACK,X方向與Y方向等距離取3點共9點,量測印刷寬度,如下資料,應如何解析?1. 若規格在24010,製程能力CPK=0.64,顯然不足, = 239.23,s = 4.8WIDTHY1Y3Y5平均X1239.25244.67234.13239.35X3238.54244.33236.33239.74X5237.42243.04235.38238.61平均238.4244.01235.28239.23WIDTHY1Y3Y5標準差X12.512.164.485.37X32.082.712.354.14X53.134.253.164.79成對比較成對比較類似組件搜尋方法,藉由成對"良品"和"壞品"單位的比較,找出兩者之間差異,進而根據其差異分析重要要因。使用時機:l 單位元件或子裝置不能夠分解或重新組裝(不像組件搜尋)l 有多數良品和少數的壞品成對單位出現l 有適當的參數來發現與區別良品與從壞品此技術可適用在組裝站、製程、測試儀器,等具有類似的單位,組裝,或工具。同時,它也是失敗故障分析的有力工具。成對比較製作步驟:1. 選出一良品單位和一壞品單位(盡可能的,接近相同的製造時間)。2. 稱此為一對,詳細地觀察記錄在二單位之間的差異。差異可能來自外觀的尺寸電性機械性質,化學性質等,觀察技術包括眼睛,X光,掃描電子顯微鏡,破壞測試等。3. 選擇第二對良品和壞品單位。如同第2步驟,.觀察且記錄此對差異,4. 重複此搜尋步驟,第三,第四,第五,和第六對,直到觀察的差異顯現出有重覆的模式。5. 去掉每對中有矛盾方向的差異。通常,到第五或第六對,一致性的差異將降至少數幾個要因。為差異的要因分析提供強列的線索。成對比較個案研究:不良兩極管DO-35兩極管,汽車裡的在-那之下-頭巾電子學組件用,有無法接受的失敗率。一些被失敗的兩極管被從領域向後地帶來和反對沒有有缺點的好的單位比較。被的成對比較結果,當在掃描的電子之下檢查的時候仔細檢查,是依下列各項:雙號碼觀察不同號碼分對觀察差異1良品-壞品良品沒有缺點壞品Chipped die,oxide defects,copper migration2良品-壞品良品沒有缺點壞品Alloying irregularities,oxide defects3良品-壞品良品沒有缺點壞品Oxide defects,contamination4良品-壞品良品沒有缺點壞品Oxide defects,chipped die結論:1. Four repeats in oxide defects, probable Red X family 2. Two repeats in chipped die, probable Pink X familySolution: Working with the semiconductor supplier (who, up to this analysis, had resisted responsibility), the following corrective actions were instituted: 1. For oxide defects: * Thicker photo resist * Mask inspection * Increased separation between mask and die 2. For chipped die: * Reduced oxide thickness in scribe grid B VS. CB表示Better,C表示Current,就是比較好條件與現有條件是否有差異。在過去常用的方法為兩組母平均差之檢定,但計算較為複雜,再過去統計方法中有很多簡易之計算方法,其中SHAININ提出兩種容易之方式(1)Lord Test及(2)Tukey Quick Test。SHAININ使用Lord test 之步驟步驟BetterCurrent(1)實驗B&C各實驗3次DATAX1X2X3Y1Y2Y3(2)中位(3)全距R1R2(4)(5) 參考Lord's test for two independent samples.此處Lord 採用平均,SHAININ採用中位數,較方便計算,判斷值在5%下,Lord值為1.272,SHAININ為1.25,可能是為方便記憶。(6) 判斷所選擇因子中有影響的大要因存在,可進行步驟2(7)如果 判斷所選擇的因子中無影響大要因存在,回到步驟1例:HOUREMETERAn hour meter , built by an electronics company , had a 20-25 percent defect rate because several of the units could not meet the customer's reliability requirement of perfect operation at -40 C .The worst units could only reach 0 C before malfunction .The hour meter consists of a solenoid cell with a shield to concentrate the electrical charge which pulses at regular intervals .The pulse triggers a solenoid pin , which in turn causes a verge arm , or bell crank , to trip the counter , advancing it by one unit .The counter is attached to a numeral shaft containing numeral wheels .These numeral wheels are separated from each other by idler gears , which rotate on an idler gear shaft .Both the idler gear shaft and the numeral shaft are attached to the mainframe , made of hard white plastic .The pulsing rhythm is provided by an electronics board .High(Good)AssemblyLow(Bad)AssemblyInitial results(H1):40。C(L1) O。CResults after lst disassembly/ reassembly(H2):35。C(L2)5。CResults after 2nd disassembly/ reassembly(H3):37。C(L3)7。Cmedian375range57D=-32,=(5+7)/2=6,D: =32:6=5.33:1>1.25,The test for a significant and repeatable difference between the good units and bad units is determined by the formula : D: >1.25:1,The Red X and Pink X are among the causes being considered and there is good repeatability in the disassembly / reassembly process .Lord's test for two independent samples. In this test the sample ranges R1,R2 replace s1, s2. This is a quick test, no more robust under nonnormality than the t test, and even more vulnerable to erroneous sample extreme values. Table A 7(ii) applies to two independent samples of equal size. The mean of the two ranges, w = (R1 + R2)/2, replaces the w of the paired test and 21takes the place of D. The test of significance is applied to the numbers of worms found in two samples of 5 rats, one sample treated previously by a wormkiller. See table 8.7.1. We have 21 = 171.8 and w = (219 + 147)/2 = 183. From this, tR = (21)/ = 171.8/183 = 0.939, which is beyond the 1% point, 0.896, shown in table A 7(ii) for n = 5. TABLE 8.7.1NUMBER OF WORMS PER RATTreatedUntreated12337814327519241240265259286Means, 151.4323.2Ranges, R219147To find 95% confidence limits for the reduction in number of worms per rat due to the treatment, we use the formula (21)tR 21 (21) + tR171.8 (0.613)(183 21171.8 + (0.613)(183)60 21284l The confidence interval is wide, owing both to the small sample sizes and the high variability from rat to rat. Student's t, used in example 6.8.3 for these data, gave closely similar results for the significance level and the confidence limits. l For two independent samples of unequal sizes; Moore (7) has given tables for the 10%, 5%, 2%, and 1% levels of Lord's test to cover all cases in which the sample sizes n. and n1,n2 are both 20 or less. l The range method can also be used when the sample size exceeds 20. With two samples each of size 24, for example, each sample may be divided at random into two groups of size 12. The range is found for each group, and the average of the four ranges is taken. Lord (3) gives the necessary tables. This device keeps the efficiency of the range test high for samples greater than 20, though the calculation takes a little longer. l To summarize, the range test is convenient for normal samples if a 5% to 10% loss in information can be tolerated. It is often used when many routine tests of significance or calculations of confidence limits have to be made. SHAININ使用Tukey Quick Test之步驟1 找出聯合的那些二組樣本裡的最大和最小值,稱為聯合最大,及聯合最小2 如果聯合最大值和聯合最小值兩者在相同組的樣本發生,我們沒有足夠證據證實二組樣本是不同的。在這情況我們指定統計值T=0。步驟終止。如果一組樣本包含聯合最大值和另一組有聯合最小值, 繼續第 3 至7步驟.3 找出第一組樣本的最大和最小值4 找出第二組樣本的最大和最小值5 考慮聯合最小值,計算另組最小值比聯合最小值大的個數6 考慮聯合最大值,計算另組最大值比聯合最大值小的個數7 T數值即為步驟第5和第 6相加判斷如表A.7所示,N為較大組,n為較小組,如果n=3,N=4,可查道7/-/-,即若T>7,可判斷此兩組有差異,否則證據未足夠判為有差異。同值時之計算,有兩種可能發生1 當兩組之最大值等於聯合最大值,或者兩組之最小值等於聯合最小值,在這些情形其中任何一個,T值為0.2 如果一組樣本包含聯合最大值和另一組有聯合最小值,若發生另組數值與聯合最小相同時或若發生另組數值與聯合最大相同時,此時個數以1/2個計算組件及變數搜尋(Component & Variable Search)步驟1:粗估(Ballpark)1. 列出(找出)可能會影響的零組件(分好與壞的PART)或可能會影響的變數(分出高及低的水準)2. 確認這些要因中,會包括有影響變異之大要因作法:將最好的組合,稱為Good(High)與最差的組合,稱為Bad(Low) 各3次實驗,共6次,實驗採6次隨機試驗解析:GOODBAD實驗X1X2X3Y1Y2Y3(1)中位(2)全距R1R2(3)(4) 參考Lord's test for two independent samples.(5) 判斷所選擇因子中有影響的大要因存在,可進行步驟2(6)如果 判斷所選擇的因子中無影響大要因存在,回到步驟1步驟2:消去(elimination)逐一確認要因中是那一個重要(Red X or Pink X),同時去除不重要因子(消去法)作法:從第一個變數稱為A開始,選擇好的條件AH,AL,其餘的變數組合為差的組合稱為RL,RH。實施AL,RH,及AHRL之實驗,從此處判斷A是否具有重要性。判斷法:如果A因子有重要影響,則應該有AL在RH群中,會有顯著的差別出現,同時AH在RL群中會有顯著的差別出現,也因此我們有如下之判斷方法。(1) 分別做出好、壞、群之管制線公式:好群管制線 參考統計量壞群管制線(2) 判斷如果AHRL之值高出壞群中之上線(或)ALRH低於好群中之下線,則判斷A 為重要因子(RED X,PINK X)(註:1.同時出界、2.一出一未出(交互作用)、3.未出界(無效果))如此逐一判斷直至所有因子判斷完畢AhRlAlRhHIGHBETWEENLOWHIGHBETWEENLOW步驟3:定案(capping run),確認組合之效果(交互作用)再將重要因,好的組合為QH,壞的組合為QL其解因組合為RH,RL,實施QH RL,QL RH之實驗,檢討出組合之效果(交互作用)步驟4:全因子(Full factorial),檢出重要要因之效果大小將重要因子實施完全配置之解析,計算各因子及交互作用之效果,找出最佳之組合值。例:HOUREMETER(Component serach)An hour meter , built by an electronics company , had a 20-25 percent defect rate because several of the units could not meet the customer's reliability requirement of perfect operation at -40 C .The worst units could only reach 0 C before malfunction .The hour meter consists of a solenoid cell with a shield to concentrate the electrical charge which pulses at regular intervals .The pulse triggers a solenoid pin , which in turn causes a verge arm , or bell crank , to trip the counter , advancing it by one unit .The counter is attached to a numeral shaft containing numeral wheels .These numeral wheels are separated from each other by idler gears , which rotate on an idler gear shaft .Both the idler gear shaft and the numeral shaft are attached to the mainframe , made of hard white plastic .The pulsing rhythm is provided by an electronics board .High(Good)AssemblyLow(Bad)AssemblyInitial results(H1):40。C(L1) O。CResults after lst disassembly/ reassembly(H2):35。C(L2)5。CResults after 2nd disassembly/ reassembly(H3):37。C(L3)7。Cmedian375range57D=-32,=(5+7)/2=6,D: =32:6=5.33:1>1.25,Control limits =median/=median2.776/1.81(此處為個別值信賴區間,不是群體平均信賴區間)The test for a significant and repeatable difference between the good units and bad units is determined by the formula : D: >1.25:1,The Red X and Pink X are among the causes being considered and there is good repeatability in the disassembly / reassembly process .noComponent SwitchedHigh AssemblyResultsControl LimitsLow AssemblyResulsControl LimitsAnalysislnitial No.1Dis/Reassembly NO 2Dis/Reassembly NO 3AllComp.HighAllComp.HighAllComp.High-40-35-37median2.776/1.81AllComp.LowAllCompLowAllCompLow0-5-7median2.776/1.811AALRH-40-27.8-46.2AHRL-5-14.2+4.2A Unimportant2BBLRH-35-27.8-46.2BHRL0-14.2+4.2B Unimportant3CCLRH-35-27.8-46.2CHRL-5-14.2+4.2C Unimportant4DDLRH-20-27.8-46.2DHRL-5-14.2+4.2D Important5EELRH-40-27.8-46.2EHRL0-14.2+4.2E Unimportant6FFLRH-40-27.8-46.2FHRL-5-14.2+4.2F Unimportant7GGLRH-20-27.8-46.2GHRL-5-14.2+4.2G Important8HHLRH-35-27.8-46.2HHRL0-14.2+4.2H UnimportantCapping RunRDHGHRL-40-27.8-46.2DLGLRH0-14.2+4.2R unimportantCONCLUSION1. Components A, B, C, E, F, and H are within the high side and low side control limits .So they are unimportant2. Components D and G are out side the high side control limits. So they are important.3. The capping run confirmed that D and G combined go outside both sides of the control limits. So D and G and their interaction effects are important統計量全距平均(Mean Range)統計量當xi1,xi2,xin為從一常態群體之樣本(i=1k),12k1X11X21Xk12X12X22Xk2nXn1Xn2Xkn平均全距R1R2RK全距平均(Mean Range) ,=1. 即E()=s,此處1/值如下表所示,此種推定之效率(與s比較變異數)如下表所示當n>12以上時,效率值在0.8以下,n=5以下時效率值在0.955以上,因此一般組之大小都在5以下之原因。2. 之分配,n()/s2為趨近分配,此處值如下表所示,從表中可知,d2=(1+1/4n),當組數夠大時,=d23. 當組數k=1,即為一般所稱之R,在不致誤解下,有時亦表示成,同理有時以d2表示。2n型多元配置解析(FULL FACTORIAL)2n型多元配置,指因子數有n個水準數各為2,完全組合。這種完全組合之實驗,我們稱為完全配置,這種配置主要目的在求得各個因子效果之大小,及因子組合後之組合效果(又稱交互作用)之大小,一般說來,效果大小來自各水準間之差異,差異愈大,表示效果大,因此有如下之問題必須解決(1)有多少效果必須計算(2)因子效果如何計算,包括主因子效果,交互作用(3)如何比較效果,下表表示因子數與效果數。N效果123456主因子效果1234562次交互作用13610153次交互作用1410204次交互作用15155次交互作用166次交互作用1組合效果014112657合計137153163一因子效果例:假設進行符號說明【例1】A1A2ABC代號dataB1B2B1B2111(1)2C12534112c3C23832121b5122bc8211a3212ac3221ab4222abc2構造模型與效果的分解23構造模型xijk=+ai+bj+ck+(ab)ij+(ac)ik+(bc)jk+(abc)ijk+eijkai=bj=ck=0,(ab)ij=(bc)jk=(ac)ik=0,(abc)ijk=0效果的分解,則有如下之情形:l A因子之效果差=4|(a1-a2)|=|(1)+c+b+bc)-(a+ab+ac+abc)|=|(a-1)(b+1)(c+1)|l B因子之效果差=|(a+1)(b-1)(c+1)|l C因子之效果差|(a+1)(b+1)(