欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPTX文档下载  

    工业机器人工作站安装与调试(ABB)课件第4篇任务1214.pptx

    • 资源ID:1684942       资源大小:6.28MB        全文页数:127页
    • 资源格式: PPTX        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    工业机器人工作站安装与调试(ABB)课件第4篇任务1214.pptx

    任务十二 伺服电机变位机工作站安装与调试,任务十二 伺服电机变位机工作站安装与调试,本工作站以模拟工业机器人弧焊典型应用中的带变位机的复杂工件焊接为例,利用IRB 120搭配焊枪配合伺服电机变位机工作站,实现对带变位机的复杂工件焊接的模拟训练。本工作站还通过RobotStudio软件预置了动作效果,在此基础上实现I/O配置、程序数据创建、目标点示教、程序编写及调试,最终完成带变位机的复杂工件焊接应用程序的编写。通过本任务学习,使读者掌握工业机器人在带变位机的复杂工件焊接应用中的程序编写技巧。伺服电机变位机工作站布局如图12-1所示。,本工作站以模拟工业机器人,图12-1伺服电机变位机工作站布局,图12-1伺服电机变位机工作站布局,变位机工作站套件主要包含一台伺服电机、变位机、支架、翻转机构、夹具等。工作时由PLC通过脉冲信号控制伺服驱动器对伺服电机进行驱动,电机运行带动翻转机构进行翻转,模拟工业机器人弧焊典型应用中的带变位机的复杂工件焊接。本任务可学习PLC对伺服的闭环控制,PLC和机器人的联机控制,PLC、伺服、机器人的协同工作控制等。,变位机工作站套件主要包含一台伺服电机、变位机、支架、翻转,1)掌握伺服电机与工业机器人的配合应用。,2)掌握PLC控制系统与工业机器人的配合应用。,1)掌握伺服电机与工业机器人的配合应用。2)掌握PLC控,1.工作站硬件配置,(1)安装工作站套件准备,1)打开模块存放柜找到伺服变位机套件,使用内六角扳手拆卸套件。,2)把套件放至钳工桌桌面,并选择焊枪夹具、夹具与机器人的连接法兰、安装螺钉(若干)、伺服电机编码器线缆、动力线。,3)选择合适型号的内六角扳手把托盘拆除。,1.工作站硬件配置(1)安装工作站套件准备1)打开模块存放柜,(2)工作站安装,1)选择合适的螺钉,把套件安装至机器人操作对象承载平台的合理位置,且伺服电机与变位机构通过联轴器连接。注意保证两个机构的同轴度。,2)夹具安装:首先把夹具与机器人的连接法兰安装至机器人六轴法兰盘上,然后再把焊枪夹具固定至连接法兰上。,(2)工作站安装1)选择合适的螺钉,把套件安装至机器人操作对,(3)工作站I/O信号电路连接,PLC控制柜内的配线已经完成,更换不同工作站套件时只需根据工作站的I/O信号配置(见表12-1)对处于机器人操作对象承载平台侧面的集成信号接线端子盒进行接线即可。,表12-1变位机工作站I/O表,注:PLC控制柜内的配线已经完成,伺服驱动器I/O信号直接由PLC控制,集成信号接线端子盒只需连接原点位置检测传感器信号即可。,(3)工作站I/O信号电路连接PLC控制柜内的配线已经完成,根据工作站I/O表,把工作站传感器与集成信号接线端子盒正确连接,如图12-2所示。,图12-2变位机工作站接线图,根据工作站I/O表,把工作站传感器与集成信号接线端子盒正确连,(4)控制柜模式选择,控制柜有演示模式和实训模式两种。变位机站工作站中,伺服电机不能由面板插线直接驱动,只能选择演示模式,由PLC驱动伺服电机。演示模式时,PLC电器柜内所有配线已完成,控制柜面板模式选择开关选择“演示模式”。工作站I/O信号直接由PLC进行控制。PLC直接控制伺服驱动器驱动伺服变位机工作。,2.工作站仿真系统配置,(1)解压并初始化,(4)控制柜模式选择控制柜有演示模式和实训模式两种。变位机站,(2)标准I/O板配置,将控制器界面语言改为中文并将运行模式转换为手动,之后依次单击“ABB菜单”“控制面板”“配置”,进入“I/O主题”,配置I/O信号。本工作站采用标配的ABB标准I/O板,型号为DSQC 652(16个数字输入,16个数字输出),则需要在DeviceNet Device中设置此I/O单元的Unit相关参数,并在Signal中配置具体的I/O信号参数,配置见表11-2和表11-3。,(2)标准I/O板配置将控制器界面语言改为中文并将运行模式转,表12-2Unit单元参数,在此工作站中,配置了两个数字输入信号和两个数字输出用于相关动作的控制。,表12-3I/O信号参数,表12-2Unit单元参数在此工作站中,配置了两个数字输入,(3)创建工具数据,在本工作站应用中,机器人所使用的焊枪工具为不规则形状,这样的工具很难通过测量的方法计算出工具尖点相对于初始工具坐标tool0的偏移,所以通常采用特殊的标定方法来定义新建的工具坐标系。本工作站中使用六点标定法,即前四个点为TCP标定点,后两个点(X、Z点)为方向延伸点,在轨迹工件台上设置有一尖点作为工具数据的示教点,具体操作过程请参照任务五,进行工具数据Tooldata_1的设定,如图12-3所示。,在示教器中,工具数据最终值见表12-4。,(3)创建工具数据在本工作站应用中,机器人所使用的焊枪工具为,图12-3机器人的工具坐标系Tooldata_1,图12-3机器人的工具坐标系Tooldata_1,(4)创建工件坐标系数据,在本工作站中,因只需对工件进行焊接处理,故此处未设定工件坐标系,而是采用系统默认的初始工件坐标系Wobj0(此工作站的Wobj0与机器人基坐标系重合)。,(4)创建工件坐标系数据在本工作站中,因只需对工件进行焊接处,表12-4工具坐标系Tooldata_1数据,表12-4工具坐标系Tooldata_1数据,(5)创建载荷数据,在本工作站中,因焊枪工具较轻,故无须重新设定载荷数据。,(6)程序模板导入,I/O配置完成后,将程序模板导入该机器人系统中,在示教器的程序编辑器中可进行程序模块的加载,依次单击“ABB菜单”“程序编辑器”,若出现加载程序提示框,则暂时单击“取消”,之后可在程序模块界面中进行加载。,(5)创建载荷数据在本工作站中,因焊枪工具较轻,故无须重新设,图12-4伺服电机变位机工作站的控制流程图,图12-4伺服电机变位机工作站的控制流程图,浏览至前面所创建的备份文件夹,选择“MainModule.mod”,再单单击“确定”按钮,完成程序模板的导入。,3.程序编写与调试,(1)工艺流程图,本工作站模拟工业机器人弧焊典型应用中的带变位机的复杂工件焊接,变位机由PLC控制的伺服电机驱动。在工作过程中,机器人和PLC需要进行信息沟通,如机器人请求变位机复位、置位,PLC向机器人发出复位完成、置位完成信号等。伺服电机变位机工作站的控制流程图如图12-4所示。,浏览至前面所创建的备份文件夹,选择“MainModule.m,(2)程序编写,工作站程序主要由主程序、初始化子程序、焊接工件上半部分子程序、焊接工件下半部分程序组成。主程序如下:,(2)程序编写工作站程序主要由主程序、初始化子程序、焊接工件,焊接过程中,机器人请求变位机复位、置位信号为DO1,为便于仿真,PLC向机器人发出复位完成、置位完成信号用延时代替。焊接工件上半部分子程序如下所示,下半部分子程序与上半部分子程序相似。,焊接过程中,机器人请求变位机复位、置位信号为DO1,为便于仿,4.示教目标点,完成坐标系标定后,需要示教基准目标点。在此工作站中,需要示教原位phome、焊接基准点p10、p20、p30、p40、p50等。在例行程序中有专门用于示教基准目标点的程序Path_10(),在程序编辑器菜单中找到该程序,如图12-5所示。,示教目标点时,需要注意,手动操作画面当前使用的工具和工件坐标系要与指令里面的参考工具和工件坐标系保持一致,否则会出现“选择的工具、工件错误”等警告。phome点的示教位置如图12-6所示。,4.示教目标点完成坐标系标定后,需要示教基准目标点。在此工作,图12-5示教目标点程序,图12-5示教目标点程序,图12-6phome点的示教位置,图12-6phome点的示教位置,手动状态下将主程序逐步运行到p10、p20、p30、p40、p50等位置后选择“修改位置”,将当前位置存储到对应的位置数据存储器里,即完成相应点的示教任务。具体示教过程请参照前面相关任务。,完成示教基准点后,将工作站复位,单击仿真播放按钮,查看工作站运行状态,若正常则保存该工作站。,手动状态下将主程序逐步运行到p10、p20、p30、p40、,本工作站的难点在于如何规划机器人的运行轨迹,示例程序只提供了一种设计思路,读者可以尝试不同的方法来修改运行轨迹,在保证轨迹安全的前提下,尽量缩短机器人的运行路径,从而提高装配效率。,本工作站的难点在于如何规划机器人的运行轨迹,示例程序只提供了,任务十三 自动生产线工作站安装与调试,任务十三 自动生产线工作站安装与调试,本工作站以自动生产线上工业机器人的典型应用为例,利用IRB 120搭配专用工件夹具实现在自动生产线上搬运物品的过程。本工作站中还通过RobotStudio软件预置了动作效果,在此基础上实现I/O配置、程序数据创建、目标点示教、程序编写及调试,最终完成自动生产线上工业机器人搬运物品程序的编写。通过本章学习,使读者掌握工业机器人在自动生产线上应用的程序编写技巧。自动生产线工作站布局如图13-1所示。,本工作站以自动生产线上工业机器人的典型应用为例,利用IR,自动生产线工作站包含供料单元、同步输送带、变频器、三相异步电动机、码垛工作台等,且三相异步电动机侧轴装有旋转编码器,便于对电机闭环控制,可精确定位物料的位置。,工作时,控制系统控制供料单元进行供料、推料至输送带,待物料输送至输送线末端时,机器人进行物料分拣码垛工作。,该站主要用于模拟生产线的码垛综合应用,也可自由搭配,作为模拟物流分拣工作站。,自动生产线工作站包含供料单元、同步输送带、变频器、三相异,1)掌握同步输送带的控制方法。,2)掌握变频器所控制的三相异步电动机调速功能。,3)掌握旋转编码器在定位中的作用。,1)掌握同步输送带的控制方法。2)掌握变频器所控制的三相,1.工作站硬件配置,(1)安装工作站套件准备,1)打开模块存放柜找到自动生产线套件,使用内六角扳手拆卸套件。,2)把套件放至钳工桌桌面,并选择吸盘夹具、夹具与机器人的连接法兰、安装螺钉(若干)、三相异步电动机动力线。,3)选择合适型号的内六角扳手把托盘拆除;,1.工作站硬件配置(1)安装工作站套件准备1)打开模块存,(2)工作站安装,1)选择合适的螺钉,把套件安装至机器人操作对象承载平台的合理位置。,2)夹具安装:首先把夹具与机器人的连接法兰安装至机器人六轴法兰盘上,然后再把吸盘夹具固定至连接法兰上,如图13-2所示。,(3)工作站I/O信号电路连接,PLC控制柜内的配线已经完成,更换不同工作站套件时只需根据工作站的I/O信号配置(见表13-1)对处于机器人操作对象承载平台侧面的集成信号接线端子盒进行接线即可。,(2)工作站安装1)选择合适的螺钉,把套件安装至机器人操作对,图13-1自动生产线工作站布局,图13-1自动生产线工作站布局,图13-2自动生产线六轴法兰盘安装,图13-2自动生产线六轴法兰盘安装,表13-1自动生产线工作站I/O表,注:PLC控制柜内的配线已经完成,变频器信号直接由PLC控制,集成信号接线端子盒只需连接工作站上的传感器及执行气缸电磁阀信号即可。,表13-1自动生产线工作站I/O表注:PLC控制柜内的配线,根据工作站I/O表,把工作站传感器与集成信号接线端子盒正确连接,如图13-3所示。,图13-3自动生产线工作站接线图,根据工作站I/O表,把工作站传感器与集成信号接线端子盒正确连,(4)控制柜模式选择,控制柜有演示模式和实训模式两种。自动生产线工作站中的三相异步电机不能由面板插线直接驱动,只有选择演示模式时,由PLC驱动变频器控制电机。,2.工作站仿真系统配置,(1)解压并初始化,(2)标准I/O板配置,(4)控制柜模式选择控制柜有演示模式和实训模式两种。自动生产,将控制器界面语言改为中文并将运行模式转换为手动,之后依次单击“ABB菜单”“控制面板”“配置”,进入“I/O主题”,配置I/O信号。本工作站采用标配的ABB标准I/O板,型号为DSQC 652(16个数字输入,16个数字输出),则需要在DeviceNet Device中设置此I/O单元的Unit相关参数,并在Signal中配置具体的I/O信号参数,配置见表13-2和表13-3。,表13-2Unit单元参数,将控制器界面语言改为中文并将运行模式转换为手动,之后依次单击,表13-3I/O信号参数,表13-3I/O信号参数,图13-4机器人的工具坐标系,图13-4机器人的工具坐标系,在此工作站中,配置了两个数字输入信号和四个数字输出用于相关动作的控制。,(3)创建工具数据,此工作站中,工具部件主要是两个吸盘组成的工具套件,此工具部件较为规整。本工作站以一个吸盘为中心设置工具数据,该数据可以通过直接测量出数值进行创建,此处新建的吸盘工具坐标系相对于tool0沿着其Z轴正方向偏移66mm,沿着其X轴正方向偏移84mm,新建吸盘工具坐标系的方向沿用tool0方向,如图13-4所示。,在示教器中,编辑工具数据,确认各项数值,具体见表13-4。,在此工作站中,配置了两个数字输入信号和四个数字输出用于相关动,表13-4工具数据的参数设定,表13-4工具数据的参数设定,图13-5工件坐标系的设定位置,图13-5工件坐标系的设定位置,(4)创建工件坐标系数据,本工作站属于搬运类操作,需要预先设置放置工件的码垛工作台工件坐标系。这样当发现工件整体偏移以后,只需要重新标定工件坐标系即可完成调整。在此工作站中,所需创建的工件坐标系如图13-5所示。,在图13-5中,根据3点法,依次移动机器人至X1、X2、Y1点并记录,则可自动生成工件坐标系统Wobj_1。在标定工件坐标系时,要合理选取X、Y轴的方向,以保证Z轴方向便于编程使用。X、Y、Z轴方向符合笛卡尔坐标系,即可使用右手来判定,如图中+X、+Y、+Z所示。在本工作站中,将工件坐标系建立在码垛工作台上,方便拾取工件后的放置位置坐标的确定。,(4)创建工件坐标系数据本工作站属于搬运类操作,需要预先设置,(5)创建载荷数据,在本工作站中,因搬运物件较轻,故无须重新设定载荷数据。,(6)程序模板导入,I/O配置完成后,将程序模板导入该机器人系统中,在示教器的程序编辑器中可进行程序模块的加载,依次单击“ABB菜单”“程序编辑器”,若出现加载程序提示框,则暂时单击“取消”按钮,之后可在程序模块界面中进行加载。,浏览至前面所创建的备份文件夹,选择“MainModule.mod”,再单击“确定”按钮,完成程序模板的导入。,(5)创建载荷数据在本工作站中,因搬运物件较轻,故无须重新设,3.程序编写与调试,(1)工艺流程图,本工作站工作时,PLC控制器控制供料单元进行供料、推料至输送带,待物料输送至输送带末端时,机器人进行物料分拣码垛工作。自动生产线工作站的控制流程图如图13-6所示。,3.程序编写与调试(1)工艺流程图本工作站工作时,PLC控制,图13-6自动生产线工作站的控制流程图,图13-6自动生产线工作站的控制流程图,(2)程序编写,工作站程序主要由主程序、初始化子程序、输送带拾取工件程序1(rPick)、码垛工作台上部放置工件子程序(rPlase)、输送带拾取工件程序2(rPick1)、码垛工作台下部放置工件子程序(rPlase1)组成。主程序如下:,(2)程序编写工作站程序主要由主程序、初始化子程序、输送带拾,工业机器人工作站安装与调试(ABB)课件第4篇任务12-14,完整程序参考“13_ZDSCX.rapag”文件中的程序。,4.示教目标点,完成坐标系标定后,需要示教基准目标点。在此工作站中,需要示教原位“pHome”、拾取工件基准点“pPick”、放置工件基准点1“pPlase1”。在例行程序中有两个专门用于示教基准目标点的程序rModPos()和Path_10(),在程序编辑器菜单中找到该程序,如图13-7所示。,示教目标点时,需要注意,手动操作画面当前使用的工具和工件坐标系要与指令里面的参考工具和工件坐标系保持一致,否则会出现“选择的工具、工件错误”等警告。,完整程序参考“13_ZDSCX.rapag”文件中的程序。4,图13-7示教目标点程序,图13-7示教目标点程序,示教pHome使用tGripper和Wobj0,如图13-8所示。,移动到pPick位置后将吸盘置位为1,控制吸盘将外工件拾取,其拾取位置如图13-9所示,同理完成pPlase1点的示教任务,如图13-10所示。,完成示教基准点后,将工作站复位,单击仿真播放按钮,查看工作站运行状态,若正常则保存该工作站。,示教pHome使用tGripper和Wobj0,如图13-8,图13-8pHome点的示教位置,图13-8pHome点的示教位置,图13-9pPick点的示教位置,图13-9pPick点的示教位置,图13-10pPlase1点的示教位置,图13-10pPlase1点的示教位置,1)练习设定自动生产线常用的I/O配置。,2)练习自动生产线工件数据的创建。,3)尝试多工位自动生产线搬运程序的编写。,1)练习设定自动生产线常用的I/O配置。2)练习自动生产线工,任务十四 工业机器人弧焊设备安装与调试,任务十四 工业机器人弧焊设备安装与调试,本任务选择了YL-399A型工业机器人实训考核装备,它是典型的工业机器人弧焊设备。通过本任务的学习,掌握弧焊常用参数设置、软件设定、弧焊程序的编程与调试。,本任务选择了YL-399A型工业机器人实训考核装备,它是典型,利用YL-399A型工业机器人实训考核装备焊接如图14-1所示的工件。,图14-1焊接任务,利用YL-399A型工业机器人实训考核装备焊接如图14-1所,焊接工作由PLC远程控制完成。设备启动前要满足如下条件:机器人选择自动模式、安全光幕没有报警、机器人没有急停报警等。满足条件时(即设备就绪)黄色警示灯常亮,否则黄色警示灯以1Hz频率闪烁。系统没有就绪,须按复位按钮进行复位。设备就绪后,按下启动按钮,系统运行,机器人程序启动,警示灯黄灯、绿灯常亮。,焊接工作由PLC远程控制完成。设备启动前要满足如下条件:机器,机器人在运行过程中,若按下暂止按钮,机器人应暂停运行,且绿色警示灯以1HZ频率闪烁,再次按下启动按钮,机器人继续运行,绿色警示灯常亮。,机器人在运行过程中,若安全光幕动作,机器人应暂停运行,且警示灯绿灯、红灯以1HZ频率闪烁。须按下复位按钮清除安全光幕报警信号。报警清除后红色警示灯熄灭,这时按下启动按钮,机器人继续运行,绿色警示灯常亮。,机器人在运行过程中,若按下暂止按钮,机器人应暂停运行,且绿色,机器人在运行过程中,若急停按钮动作,系统应立即停止运行,同时绿色警示灯熄灭。系统急停后须按复位按钮,清除机器人急停信号。为了安全考虑,急停信号清除后,操作机器人示教器,使机器人回到工作原点。机器人回到工作原点后,系统才可以再次启动。,机器人在运行过程中,若急停按钮动作,系统应立即停止运行,同时,亚龙YL-399A型工业机器人实训考核装备由PLC控制柜、ABB机器人系统、机器人安装底座、焊接系统、除烟系统、警示灯、按钮盒等组成,如图14-2所示。,图14-2亚龙YL-399A型工业机器人实训考核装备,亚龙YL-399A型工业机器人实训考核装备由PLC控制柜、A,YL-399A实训设备的PLC程控柜用来安装断路器、PLC、触摸屏、开关电源、熔丝、接线端子、变压器等元器件。PLC程控柜内部图如图14-3所示。PLC采用的是合信的CPU 126 AC/DC/RLY PLC和EM131 AI412bit模块作为中央控制单元。,图14-3PLC程控柜,1.PLC控制柜,YL-399A实训设备的PLC程控柜用来安装断路器、PLC、,2.ABB机器人系统,YL-399A实训设备的ABB机器人系统包括IRB 1410机器人、IRC 5机器人控制器和示教器等,如图14-4所示。,3.焊接和除烟系统,YL-399A实训设备的焊接系统,它主要由奥太Pulse MIG-350焊机、送丝机、焊枪、工业液体CO2等构成,是焊接系统的重要组成部分。另配除烟系统,有效地减少对环境的烟尘排放,能有效防止焊接废气对人体的伤害,具体如图14-5所示。,2.ABB机器人系统YL-399A实训设备的ABB机器人系统,图14-4YL-399A设备ABB机器人系统,图14-4YL-399A设备ABB机器人系统,图14-5焊接系统主要部件a)送丝机b)工业液体CO2c)焊机d)焊枪e)除烟机,图14-5焊接系统主要部件,1.Pulse MIG-350焊机介绍,Pulse MIG-350焊机前后面板接口如图14-6所示。焊机的控制面板用于焊机的功能选择和部分参数设定。焊机控制面板包括数字显示窗口、调节旋钮、按键、发光二极管指示灯,如图14-7所示,各序号含义见表14-1。,1.Pulse MIG-350焊机介绍Pulse MIG,图14-6前后面板接口含义1外设控制插座X32焊机输出插座(-)3程序升级下载口X44送丝机控制插座X75输入电缆6空气开关7熔丝管8焊机输出插座(+)9加热电源插座X5,图14-6前后面板接口含义,图14-7焊机控制面板,图14-7焊机控制面板,表14-1控制面板参数含义,表14-1控制面板参数含义,2.焊机的操作,Pulse MIG-350焊机具有脉冲和恒压两种输出特性。脉冲特性可实现碳钢及不锈钢、铝及其合金、铜及其合金等有色金属的焊接,恒压特性可实现碳钢和不锈钢纯CO2气体及混合气体保护焊。,1)焊接方式选择:按下按键进行选择,与之相对应的指示灯亮。,- P-MIG:脉冲焊接。,- MIG:一元化直流焊接。,- STICK:焊条电弧焊。,2.焊机的操作Pulse MIG-350焊机具有脉冲和恒压两,- TIG:钨极氩弧焊。,- CAC-A:碳弧气刨。,2)工作模式选择:按下按键进行选择,与之相对应的指示灯亮。,主要工作模式有两步工作模式、四步工作模式、特殊四步工作模式、点焊工作模式四种,各工作参数如图14-8图14-11所示。,图14-8两步工作模式,- TIG:钨极氩弧焊。- CAC-A:碳弧气刨。2)工作模,图14-9四步工作模式,图14-9四步工作模式,图14-10特殊四步工作模式,图14-10特殊四步工作模式,图14-11点焊工作模式,图14-11点焊工作模式,3)保护气体及焊接材料选择:按下按键进行选择,与之相对应的指示灯亮。,4)焊丝直径选择:按下按键进行选择,与之相对应的指示灯亮。,-0.8-1.0,-1.2-1.6,注意,根据要求完成以上选择;通过送丝机上电流调节旋钮可预置所需的电流值;将送丝机上电压调节旋钮调到标准位置后可进行焊接;最后根据实际焊接弧长微调电压旋钮,使电弧处在焊接过程中稍微夹杂短路的声音,可达到良好的焊接效果。,3)保护气体及焊接材料选择:按下按键进行选择,与之相对应的,进出隐含参数菜单及参数项调节,同时按下存储键和焊丝直径选择键并松开,隐含参数菜单指示灯亮,表示已进入隐含参数菜单调节模式。再次按下存储键退出隐含参数菜单调节模式,隐含参数菜单指示灯灭。 用焊丝直径选择键选择要修改的项目。用调节旋钮调节要修改的参数值。其中,P05、P06项可用键切换至显示电流百分数、弧长偏移量,并可用调节旋钮修改对应的参数值。操作步骤如图14-12所示。,注意,按下调节旋钮约3s,焊机参数将恢复出厂设置,见表14-2。,3.参数菜单设置2,进出隐含参数菜单及参数项调节,同时按下存储键和焊丝直径选,图14-12操作步骤,图14-12操作步骤,表14-2焊机主要参数设置,表14-2焊机主要参数设置,表14-2焊机主要参数设置,表14-2焊机主要参数设置,4.作业与焊接,(1)作业模式,作业模式在半自动及全自动焊接中都能提高焊接工艺质量。平常,一些需要重复操作的作业(工序)往往需要手工记录工艺参数。而在作业模式下,可以存储和调取多达100 个不同的作业记录。,以下标志将出现在作业模式下的左显示屏中显示。,1)-:表示该位置无程序存储(仅在调用作业程序时出现,否则将显示nPG)。,4.作业与焊接(1)作业模式作业模式在半自动及全自动焊接中都,2)nPG:表示该位置没有作业程序。,3)PrG:表示该位置已存储作业程序。,4)Pro:表示该位置正在创建作业程序。,(2)存储作业程序,焊机出厂时未存储作业程序,在调用作业程序前,必须先存储作业程序。按以下步骤操作:,1)设定好要存储的作业程序的各规范参数。,2)轻按存储键,进入存储状态。显示号码为可以存储的作业号。,2)nPG:表示该位置没有作业程序。3)PrG:表示该位置已,3)用旋钮,选择存储位置或不改变当前显示的存储位置。,4)按住存储键,左显示屏显示“Pro”,作业参数正在存入所选的作业号位置。,5)左显示屏显示“PrG”时,表示存储成功。此时即可松开存储键,再轻按存储键,退出存储状态。,注意,如果所选作业号位置已经存有作业参数,则会被新存入的参数覆盖,并且该操作无法恢复。,(3)存储作业程序,3)用旋钮,选择存储位置或不改变当前显示的存储位置。4)按,存储以后,所有作业都可在作业模式再次被调用。若要调用作业,可按以下步骤进行:,1)轻按调用键,调用作业模式指示灯亮。显示最后一次调用的作业号,可以用参数选择键和查看该作业的程序参数。所存作业的操作模式和焊接方法也会同时显示。,2)用旋钮选择调用作业号。,(4)焊接方向和焊枪角度,存储以后,所有作业都可在作业模式再次被调用。若要调用作业,可,焊枪向焊接行进方向倾斜010时的溶接法(焊接方法)称为“后退法”(与手工焊接相同)。焊枪姿态不变,向相反方向行进焊接的方法称为“前进法”。一般而言,使用“前进法”焊接,气体保护效果较好,可以一边观察焊接轨迹,一边进行焊接操作,因此,生产中多采用“前进法”进行焊接。焊接方向与焊枪角度如图14-13所示。,图14-13焊接方向与焊枪角度,焊枪向焊接行进方向倾斜010时的溶接法(焊接方法)称为,(5)双脉冲功能,双脉冲焊在单脉冲焊基础上加入低频调制脉冲,低频脉动频率范围为0.55.0Hz。与单脉冲相比,双脉冲的优点为:无须焊工摆动,焊缝自动成鱼鳞状,且鱼鳞纹的疏密、深浅可调;能够更加精确地控制热输入量;低电流期间,冷却熔池,减小工件变形,减少热裂纹倾向;同时能周期性地搅拌熔池,细化晶粒,氢等气体易从熔池中析出,减少气孔,降低焊接缺陷。双脉冲参考波形如图14-14所示。,(5)双脉冲功能双脉冲焊在单脉冲焊基础上加入低频调制脉冲,低,图14-14双脉冲参考波形,图14-14双脉冲参考波形,1. I/O配置,弧焊应用中,I/O信号需与ABB弧焊软件的相关端口进行关联,因此需要首先定义I/O信号,信号关联后,弧焊系统会自动地处理关联好的信号。在进行弧焊程序编写与调试时,就可以通过弧焊专用的APID指令简单高效地对机器人进行弧焊连接工艺的控制,表14-3所示就是关联的信号。,1. I/O配置弧焊应用中,I/O信号需与ABB弧焊软件,表14-3弧焊关联的信号,这些信号在ABB主界面中,选择“控制面板”“配置”“I/O”(见图14-15)主题“PROC”(见图14-16),对参数进行设定,完成后重启系统使参数生效。,表14-3弧焊关联的信号这些信号在ABB主界面中,选择“控,图14-15I/O界面,图14-15I/O界面,图14-16PROC界面,图14-16PROC界面,2.弧焊常用程序数据,在弧焊的连续工艺过程中,需要根据材质或焊缝的特性来调整焊接电压或电流的大小,或焊枪是否需要摆动,摆动的形式和幅度大小等参数。在弧焊机器人系统中,用程序数据来控制这些变化的因素。,(1)WeldData:焊接参数,焊接参数用来控制在焊接过程中机器人的焊接速度,以及焊机输出的电压和电流的大小。需要设定如下参数。,2.弧焊常用程序数据在弧焊的连续工艺过程中,需要根据材质或焊,1)Weld_Speed:焊接速度。,2)Voltage:焊接电压。,3)Current:焊接电流。,(2)SeamData:起弧/收弧参数,起弧/收弧参数是控制焊接开始前和结束后的吹保护气的时间长度,以保证焊接时的稳定性和焊缝的完整性。需要设定如下参数。,1)Purge_time:清枪吹气时间。,2)Preflow_time:预吹风时间。,1)Weld_Speed:焊接速度。2)Voltage:焊接,3)Postflow_time:尾气吹气时间。,(3)WeaveData:摆弧参数,摆弧参数是控制机器人在焊接过程中焊枪的摆动,通常在焊缝的宽度超过焊丝直径较多时通过焊枪的摆动去填充焊缝。该参数属于可选项,如果焊缝宽度较小,则在机器人线性焊接可以满足的情况下可不选用该参数。需要设定如下参数。,1)Weave_shape:摆动的形状。,2)Weave_type:摆动的模式。,3)Weave_length:一个周期前进的距离。,3)Postflow_time:尾气吹气时间。(3)Weav,4)Weave_width:摆动的宽度。,5)Weave_height:摆动的高度。,3.弧焊常用指令,任何焊接程序都必须以ArcLStart或ArcCStart开始,通常用Ar-cLStart作为起始语句;任何焊接过程都必须以ArcLEnd或ArcCEnd结束;焊接中间点用ArcL或ArcC语句;焊接过程中,不同的语句可以使用不同的焊接参数(SeamData和WeldData)。,4)Weave_width:摆动的宽度。5)Weave_he,(1)ArcLStart:线性焊接开始指令,ArcLStart用于直线焊缝的焊接开始,工具中心点线性移动到指定目标位置,整个焊接过程通过参数监控和控制。示例程序如下:,如图14-17所示,机器人线性焊接运行到p1点起弧,焊接开始。,(2)ArcLEnd:线性焊接结束指令,ArcLEnd用于直线焊缝的焊接结束,工具中心点线性移动到指定目标位置,整个焊接过程通过参数监控和控制。示例程序如下:,(1)ArcLStart:线性焊接开始指令ArcLStart,如图14-17所示,机器人线性焊接运行到p2点收弧,焊接结束。,图14-17ArcLStart、ArcLEnd指令工作示意图,(3)ArcL:线性焊接指令,ArcL用于直线焊缝的焊接,工具中心点线性移动到指定目标位置,焊接过程通过参数控制。示例程序如下:,如图14-17所示,机器人线性焊接运行到p2点收弧,焊接结束,如图14-18所示,机器人线性焊接部分应使用ArcL指令。,图14-18ArcL指令工作示意图,(4)ArcCStart:圆弧焊接开始指令,ArcCStart用于圆弧焊缝的焊接开始,工具中心点圆周运动到指定目标位置,整个焊接过程通过参数监控和控制。示例程序如下:,如图14-18所示,机器人线性焊接部分应使用ArcL指令。图,如图14-19所示,机器人从p1点圆弧焊接到p2点,p2是任意设定的过渡点。,(5)ArcCEnd:圆弧焊接结束指令,ArcCEnd用于圆弧焊缝的焊接结束,工具中心点圆周运动到指定目标位置,整个焊接过程通过参数监控和控制。示例程序如下:,如图14-19所示,机器人从p2点继续圆弧焊接到p3点结束,p2只是ArcCStart指令任意设定的过渡点。,如图14-19所示,机器人从p1点圆弧焊接到p2点,p2是任,图14-19ArcCStart 、ArcCEnd指令工作示意图,(6)ArcC:圆弧焊接指令,ArcC用于圆弧焊缝的焊接,工具中心点线性移动到指定目标位置,焊接过程通过参数控制。示例程序如下:,图14-19ArcCStart 、ArcCEnd指令工作示,如图14-20所示,机器人圆弧焊接的不规则多段部分应使用Ar-cC指令,并可以多设置与p2点类似的过渡点。,图14-20ArcC指令工作示意图,如图14-20所示,机器人圆弧焊接的不规则多段部分应使用Ar,正常情况下,焊机焊接电流、焊接弧长电压与机器人输出焊接模拟量(电压范围为010V)的关系如图14-21所示。,图14-21焊机参数与机器人输出电压关系对应图,4.焊接电流和焊接弧长电压的校正,正常情况下,焊机焊接电流、焊接弧长电压与机器人输出焊接模拟,实际上,量程对应关系和图14-21所示会有偏差,因此如果焊接规范由机器人确定,为了更加精确地控制焊接电压和焊接电流,则需要对焊接弧长电压(010V)和焊接电流(010A)的模拟量量程进行矫正。,说明:,1)实际上在远程模式下,机器人的焊接电压和焊接电流模拟量信号连接送丝机,送丝机再连接到焊机。,2)焊机的焊接电压 = 初始焊接电压(当弧长电压为0V时)+弧长电压。,实际上,量程对应关系和图14-21所示会有偏差,因此如果焊接,弧长初始电压在板厚、焊接速度等确定的情况下,只和焊接电流有关。先校正焊接电流模拟量,再校正焊接弧长电压模拟量。,模拟量校正以焊接电流模拟量为例说明。按照如下步骤进行校正:,1)单击“ABB”进入主界面,选择“控制面板”“配置”“Singal”“添加”,焊接电流模拟量名称“AO10_2CurrentRef-erence”(焊接电流是D651模块第二路模拟量输出,弧长电压是第二路输出,名称可以修改),双击进入参数设置界面,如图14-22所示。,弧长初始电压在板厚、焊接速度等确定的情况下,只和焊接电流有关,图14-22添加焊接电流模拟量参数,图14-22添加焊接电流模拟量参数,2)可以修改Dafault Value(设置焊机输出电压的默认值,此值必须大于等于Minimum Logical Value)、Maximum Logical Value(焊机最大的电流输出值)、Maximum Physical Value(焊机输出最大电流时所对应的控制信号的电压值)、Maximum Physical Value Limit(I/O板最大输出值)、Maximum Bit Value(最大逻辑位值),分别设置为1631、10、10、10、65535,其他参数都设置为0。设置完成后,单击“确定”按钮退出参数修改界面,根据提示重启系统。,2)可以修改Dafault Value(设置焊机输出电压的默,Minmum Bit Value=1.5565535/10=10158,Maximum Bit Value=9.165535/10=59637,3)返回ABB主界面,选择“输入输出”“视图”“全部信号”(见图14-23),选择信号“AO10_2CurrentReference”,单击“123”,出现如图14-24所示的窗口,可在窗口中输入数据。更改数据时,焊机上显示的焊接电流是跟着变化的。焊机最小焊接电流为60A,最大焊接电流为350A。从小到大更改AO10_2CurrentRefer-ence的数值,找焊接电流分别为60、350时对应的AO10_2Curren-tReference的值,并记录下来,即1.55和9.1。由此计算出:,Minmum Bit Value=1.5565535/10,图14-23添加后的参数列表,图14-23添加后的参数列表,图14-24设定最大值和最小值,图14-24设定最大值和最小值,4)根据上面校正的结果,修改信号AO10_2CurrentReference的参数,结果如图14-25所示,修改完成后系统重启。,图14-25AO10_2CurrentReference修正结果,4)根据上面校正的结果,修改信号AO10_2CurrentR,5)再次进入“输入输出”界面给信号AO10_2CurrentReference赋值,观察焊机上显示的焊接电流和机器人示教器上的是否一致。例如,输入80,200,焊机上的焊接电流是否也显示为80,200。一般误差不会大于1,说明校正非常成功。,5)再次进入“输入输出”界面给信号AO10_2Current,1. PLC及机器人I/O信号配置,除了需要完成焊接软件中信号的配置外,对PLC信号及机器人I/O信号还需要进行配置。表14-4给出了PLC的I/O表定义,表14-5给出了PLC和机器人的联络信号定义。,1. PLC及机器人I/O信号配置除了需要完成焊接软件中信号,表14-4PLC的I/O定义,表14-4PLC的I/O定义,表1

    注意事项

    本文(工业机器人工作站安装与调试(ABB)课件第4篇任务1214.pptx)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开