欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOCX文档下载  

    10论文正文 管道履带式机器人.docx

    • 资源ID:1661873       资源大小:1.22MB        全文页数:49页
    • 资源格式: DOCX        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    10论文正文 管道履带式机器人.docx

    青岛科技大学本科毕业设计(论文)前言油气管道输送是与铁路、公路、水运、航运并列的五大运输行业之一,长输油气管道作为一种特殊设备广泛应用于石油、石化、化工等工业领域以及城市燃气系统中,在国民经济中占有重要地位。随着“开发大西部”以及“西气东输”的战略指导方针,长输油气管道的数量在不断增加。由于历史原因,国内在役长输油气管道中部分管材制管质量较差,加上施工建设过程中存在部分焊接缺陷和涂层缺陷,这给管道的安全运行埋下隐患,即使部分投产验收合格的管道,在运行过程中也难免受到介质、温度、疲劳、腐蚀、局部载荷等因素影响,服役一段时间后产生缺陷或导致缺陷扩展,并可能最终发生失效,给人民生命财产、工业生产和社会稳定构成威胁。如何检测发现管道缺陷,事前对含缺陷管道进行评价和预测(含缺陷管道的剩余强度评价,含缺陷管道的剩余寿命预测),确保在役油气长输管道安全可靠运行是目前世界各国普遍关注和迫切需要解决的重大课题。由于在前面所述的一般工业、石油天然气、军事装备等领域中,管道作为一种有效的物料输送手段而广泛应用。为提高管道的寿命、防止泄漏等事故的发生,就必须对管道进行有效的检测维护等。而目前管道检测和维护多采用管道机器人来进行。所谓管道机器人就是一种可沿管道内部或外部自动行走、携带一种或多种传感器件如位置和姿态传感器、超声传感器、涡流传感器等以及操作机械如管道裂纹与管道接口焊接装置、防腐喷涂装置、操作手、喷枪、刷子等。在工作人员的遥控操纵或计算机控制下可在极其恶劣的环境中能够完成一系列管道检测维修作业的机电一体化系统。管道机器人可完成的管道作业有:生产、施工过程中的管道内外质量检测;管道内部清扫、抛光、焊接、喷涂等维护;对接焊缝的探伤、补口作业;旧管道腐蚀程度、破损情况检测和泄漏预报等等。 基于目前管道探伤机器人的研究现状,本课题主要研究目的是通过对管道X射线无损检测探伤机器人设计,及相关技术的查阅和应用,能够研制一台具有良好的弯道通过能力、视觉定位能力并能适应较长距离检测作业的实用样机。1绪论 管道机器人在人类社会中已经迅速的漫延开来,这一切都应归公于它自身的特点。因此,国内外都在不断的开发和研制更适合管内行走的管道机器人,并开始走向微型化、智能化,使之性能更宜人化,可控性更好,准确性更高。但是管道机器人由于受到它工作环境的限制和沉重的任务负担,致使它也不断面临着更多,更严重的困难和问题。如何解决?已经成为现代人的责任和发展方向。1.1管道机器人发展概况1.1.1国外管道机器人研究进展国外关于燃气管道机器人的研究始于20世纪40年代,由于70年代的微电子技术、计算机技术、自动化技术的发展,管道检测机器人技术于90年代初得到了迅猛发展并接近于应用水平。一般认为,法国的JVERTUT较早从事管道机器人理论和样机的研究,1978年他提出了轮腿式管内行走机构模型IPRIV,该机构虽然简单,但起了抛砖引玉的作用 。日本机器人的发展经过了60年代的摇篮期,70年代的实用期,到80年代进入普及提高期,开始在各个领域内广泛推广使用机器人。日本管道机器人众多,东京工业大学航空机械系Shigeo Hirose和Hidetaka Ohno等于1993年开始研究管道机器人,先后研制成功适用于直径50mm管道的Thes-、Thes-型管道机器人和适用于直径150mm管道的Thes-型管道机器人。Thes-型管道机器人的主要特点是轮子的倾斜角可以随着阻力大小的改变而改变,当机器人的负载较大时,轮子的倾斜角将产生变化,从而减小行走速度,增加推进力。Thes-型管道机器人的总长为300mm,质量只有3l0g。Thes-型管道机器人的每一节机器人单元的左右两侧分别布置着由弹簧板支撑的一对轮子,轮子由带减速齿轮箱的电动机驱动,从而实现机器人在管道中的前进和后退运动,Thes-型管道机器人可以很容易地在带有几个弯管接头的管道中运动。Thes-型管道机器人如图1-1所示,其采用“电机一蜗轮蜗杆一驱动轮” 的驱动方案,同时每个驱动轮都有一个倾斜角度测量轮,通过测量轮探测机器人的倾斜角度,并反馈给电机从而保证管道机器人的驱动轮以垂直的姿态运动。该管道机器人系统通过CCD摄像头实现信息的采集,整个系统采用拖缆控制方式,检测距离超过100m。图1-1 Thes-型管道机器人Fig.1-1 Thes- Pipeline robot美国是机器人的诞生地,早在1962年就研制出世界上第一台工业机器人,是世界上的机器人强国之一, 其基础雄厚,技术先进,并有很多管道机器人产品。美国Inuktun公司系列管道检测机器人Versatrax是国外现有的已成型管道机器人。Versatrax 150 检测管道最小直径为150mm,防水深度30m,电缆范围160m,速度010mmin,有效载荷92kg,CCD彩色直视摄像头。Versatrax 300”VLR检测管道最小直径为3omm,防水深度30m,电缆范围1830m,速度010mmin,有效载荷184kg,CCD彩色直视摄像头。美国纽约煤气集团公司(NYGAS)的DaphneDZurko和卡内基梅隆大学机器人技术学院的HagenSchempf博士在美国国家航空和宇宙航行局(NASA)的资助下于2001年开发了长距离、无缆方式的管道机器人系统EXLORER,专门用于检测地下煤气管道的情况, 如图1-2所示。该管道机器人系列EXPLORER就有如下特征:(1)一次作业检测距离长,采用无缆方式, 自带电池并且电池可以多次反复充电,使管道机器人具有良好的自推进能力。(2)可以在铸铁和钢质煤气管道中,低压和高压条件下工作。(3)管道机器人的彩色摄像头采用嵌入式“鱼眼” 镜头,结构非常紧凑。(4)可以顺利通过90。的弯管接头和垂直管道。(5)与外部操作人员采用无线通讯方式。(6)该管道机器人可以探测煤气管道内部是否水渗透、碎片堆积;可以确定管道内部缺陷的确切位置并且定位相应的作业装置;采用视频图像的形式准确地反映管道内部的状况条件。图1-2 EXLORER管道机器人Fig.1-2 EXLORER Pipeline robot德国工业机器人的总数占世界第三位,仅次于日本和美国。德国学者Bemhard Klaassen、Hermann Streich和Frank Kirchner等人在德国教育部的资助下于2000年研制成功了多关节蠕虫式管道机器人系统 MAKRO。该机器人由六节单元组成,其头部和尾部两个单元体完全相同,每个单元之间的节点由3个电动机驱动,使得MAKRO可以抬起或者弯曲机器人个体,从而可以轻松越过障碍物或实现拐弯运动,该管道机器人系统MAKRO具有21个自由度,长度为2m,质量为50kg,采用无缆控制方式,MAKRO系统使用于直径为直径300直径600mm的管道。加拿大INUKTUN公司的双履带式管内机器人行走机构,履带采用刚性支承结构,两履带的夹角可以调节,以适应不同的作业管径。两履带调节到平行位置时,可以在平地或矩形管道内行走。但这种刚性支承的双履带式管内机器人行走机构的两履带夹角在行走过程中是无法改变的,因此不适应管径变化的作业场合。Kawaguch等研制的管道检测机器人系统只适用于200mm的管道,而且一次作业的检测距离不大于500m;Kuntze等采用四轮独立伺服驱动方案研制成管道检测机器人系统KARO,该机器人系统只能实现对200mm管径的地下输水管道的检测,一次检测距离为400m,系统采用拖缆控制方式。1.1.2国内管道机器人研究进展国内管道机器人研究进展国内在管道机器人方面的研究起步较晚,而且多数停留在实验室阶段。哈尔滨工业大学邓宗全教授在国家“863”计划课题“X”射线检测实时成像管道机器人的研制” 的支持下,开展了轮式行走方式的管道机器人研制。该机器人具有以下特点:(1)适应大管径(大于或等于直径900mm)的管道焊缝X射线检测。(2)一次作业距离长,可达2km。(3)焊缝寻址定位精度高为±5mm。(4)检测工效高,每道焊缝(直径900mm为例)检测时间不大于3min;实现了管内外机构同步运动作业无缆操作技术,并研制了链式和钢带式两种新型管外旋转机构,课题研究成果主要用于大口径管道的自动化无损检测。上海大学研制了“细小工业管道机器人移动探测器集成系统”。其主要包含20mm内径的垂直排列工业管道中的机器人机构和控制技术(包括螺旋轮移动机构、行星轮移动机构和压电片驱动移动机构等)、机器人管内位置检测技术、涡流检测和视频检测应用技术,在此基础上构成管内自动探测机器人系统。该系统可实现20mm管道内裂纹和缺陷的移动探测。上海交通大学研制出一种呈正方形体,由12个蠕动元件组成的管内蠕动机器人,外形尺寸为35mm×35mm×35mm,体重195g(包括控制电路),步行速度为15mmmin,共有12个自由度,由SMA(形状记忆合金)与偏置弹簧组成一个驱动源,共12个驱动源。能实现管内上、下,左、右,前、后的全方位运动,能通过直管、曲率半径较大的弯管,以及L型、T型管。在北京市优秀人才项目的资助下,进行了仿蝎型管道机器人的研究工作。选择蝎子作为管道机器人模仿的对象,一方面是因为蝎子能在较复杂的地形上轻易而顺利地行走,另一方面是因为蝎子的反射作用要比那些哺乳动物要简单得多,控制算法较易实现。仿蝎管道机器人可以相对较易地跨过比较大的障碍,并且机器人的足所具有的自由度可以使机器人的运动更加灵活,可以在可达到的管面上选择最优支撑点,即使在管面极度不规则的情况下,通过严格选择足的支撑点,也能够行走自如,对凹凸不平表面的适应能力更强,机构模型如图1-3所示。 图1-3仿蝎管道机器人机构模型Fig.1-3 Model for imitation robot scorpion pipe1.2典型的管道机器人1) 蠕动式管道机器人1988年,Ikuta等引用蚯蚓运动的原理开发出了蠕动机器人,后来随着蠕动机器人技术的不断完善,其开始向大型化发展,目前已可在200300 mm的管道内应用。蠕动式管道机器人主要由蠕动部分、头部、尾部组成,如图1-4所示,1头部,2蠕动部分,3尾部。前部和尾部支撑分别装有超越离合锁死装置,实现单向运动自锁。中问蠕动部分提供机器人运动的动力。对于蠕动动力机构,目前有很多实现形式:如上海大学利用气压伸缩驱动;上海交通大学利用形状记忆合金伸缩驱动;昆明理工大学利用电磁吸合驱动如图1-5,1磁铁,2弹簧,3线圈等。下面以电磁驱动的蠕动式管道机器人为例,分析蠕动式管道机器人的运动机理。蠕动式管道机器人的运动原理如图1-6所示,1头部,2蠕动部分,3尾部,一个动作循环分为3个步骤:(1)当初始状态时,电磁铁失电,弹簧处于自由状态,故头部与尾部分离;(2)当电磁铁通电时,磁铁与线圈吸合,安装在头部上的超越单向行走方式使头部原位不动,尾部由于电磁吸力的作用向前移动;(3)断开电源,电磁力作用消失,弹簧促使磁铁与线圈分开,安装在尾部上的超越单向行走方式使尾部原位不动,头部由于弹簧力的作用向前移动。至此,机器人回到了初始状态,机器人前进了一步。蠕动机器人优点是可在细小的微型管道中行走。但由于速度的间断性和缓慢性阻碍了它的发展。 图1-4 蠕动式机器人总体结构图Fig.1-4 The overall structure of Figure creeping robot 图1-5 蠕动驱动电磁铁图 图1-6 蠕动机器人运动原理图Fig.1-5 Peristaltic drive solenoid map Fig.1-6 Creeping robot schematics2) 轮式管道机器人目前,轮式管道机器人是实际工程中应用最多的一种。轮式管内移动机器人行走的基本原理是驱动轮靠弹簧力、液压、气动力,磁性力等压紧在管道内壁上以支承机器人本体并产生一定的正压力,由驱动轮与管壁之间的附着力产生机器人前后行走的驱动力,以实现机器人的移动。轮式管道机器人的行走方式有2种:直进式和螺旋运动方式。如果驱动轮轴线与管道轴线垂直,驱动轮沿管道母线滚动,机器人在管内做平移运动,此为轮式直进式管内移动机器人,它的优点是机器人行走时,不产生姿态旋转。下面以上海交通大学研制的轮式管道机器人(图1-7,1蜗杆,2驱动电机,3驱动电机安装座,4调整电机,5铰链,6推杆,7丝杠螺母,8丝杠,9蜗杆,10蜗轮,11链条,12车轮)为例说明其工作原理。驱动电机通过轴驱动与之相连接的蜗杆,蜗杆驱动沿圆周方向成120度均匀分布的3个蜗轮,蜗轮又通过链轮和链条带动机器人本体的车轮转动,实现机器人本体在管道内的前进或后退。车轮与管道壁面之间的正压力由调节部分提供,调节电机驱动滚珠丝杠转动,丝杠螺母将在丝杠上来回轴向移动,并带动推杆通过铰链使摇杆转动,从而实现预紧力的调节。 图1-7轮式直进式管道机器人的动作原理Fig.1-7 Wheel Straight pipe robot action principle如果驱动轮轴线不与管道轴线垂直,驱动轮实际上沿着管道中某一螺旋线行走,机器人在管中一边向前移动,一边绕管道轴线转动。螺旋运动沿管轴上的速度分量即为机器人本体的移动速度,降低速度来提高驱动力,其行走机理如图1-8所示,1旋转体,2驱动轮,3支撑轮,4支撑体,5电机,它由驱动电机、旋转体和支撑体组成。3组驱动轮均匀分布于旋转体上,且与管壁呈一定的倾斜角随着电机的转动,驱动电机带动旋转体转动,使驱动轮沿管壁作螺旋运动,保持机构沿管道中心轴线移动。改变施加于电机的电流极性,可改变机器人的移动方向,从而使机器人在管内进退自如。图1-8螺旋行走方式的管道机器人Fig.1-8 Walking the way of spiral pipe robot上述2种轮式管道机器人的主要难点是机器人的能源供应问题,即对于几百千米的油气管道,不能采取拖电缆的方式。此外。螺旋管道机器人对于检测信号的处理及空间定位也是一个难点。3) 无缆管道机器人20世纪50年代,由于电子技术,计算机技术等还很落后,美、德、日等国开发了无动力管内检测设备。此种设备依靠首尾两端管内流体的压力差产生驱动力,随管内流体的流动向前移动。这就是所说的无缆管道机器人。随着科学技术的进步,此类机器人也有了很大发展,下面介绍广州工业大学杨宜民等的研究成果。无缆管道机器人由3部分组成,如图1-9所示,1姿态调节机构,2制动机构,3发电机,4机器人本体,5调速机构,包括调速机构,机器人本体及姿态调节机构,发电机及制动机构,不同部件之间用柔性连轴器连接,以对各个部分起到缓冲的作用。调速机构如图1-10所示,前面部分如能向前张开的雨伞,可按需要收放,柔性面料蒙在伞的骨架上,当伞架张开时,伞面能有效地封闭管道,增加承受流体速度压力的横截面积,推动管道机器人快速前进。伞的骨架由电磁铁元件驱动,这样通过伞面的受力面积即可调整管道机器人的运动速度。 图1-9 管道机器人结构图 图1-10 调速机构示意图Fig.1-9 Pipeline robot Chart Fig.1-10 Speed body diagram当机器人在接到指令要通过某个三岔管时,控制指令输出信号给电磁元件,电磁元件拉动张紧丝,使在它前面的引导机构围绕支撑弹簧发生偏摆,如图1-11所示,1姿态调节机构,2机器人本体,从而实现转弯导向。当机器人内部检测设备需要补充电能时,管道机器人上的制动机构将管道机器人稳稳地固定在管道的某个位置,如图1-12所示,1电磁驱动,2制动机构,3发电机,这时管内介质冲击发电机的螺旋桨叶使之平稳转动,实现管道机器人的电能补充。 图1-11 本体与姿态调节机构示意图Fig.1-11 Schematic diagram of body and posture adjusting mechanism 图1-12 制动及发电机构示意图Fig.1-12 Schematic diagram of brake and power generation sector1.3所需解决的关键技术问题1) 能源供给问题常规管道机器人能源供给一般采用有缆方式,拖缆的摩擦力并未对机器人的行走带来太大的影响,至少在几百米以内是可以作业的。但对于几百km长的石油天然气管道,机器人后部拖缆显然不可行。目前,据报道的拖缆管道机器人最多也只能在管道内行走2km所以要想开发出具有实用意义的在线管道机器人,必须首先解决能源供给问题。2) 可靠性问题石油天然气管道是很重要的能源命脉,对于现有的大口径管道,管道事故将直接影响管道公司的经济效益及国家的能源供给。为此,管道机器人在线作业时,不能影响管内介质的正常输送,在线管道机器人的运行可靠性必须给予保证。3) 速度及位置识别常规管道机器人一般采用与驱动轮连接的光电码盘构成闭环控制,实现速度和位置检测。但管道机器人在一些工况复杂的管道内,驱动轮在管道壁面上有时会产生打滑现象,这将影响光电码盘的检测精度。除了速度位置检测问题外,由于管内的信号屏蔽,通信问题对于石油天然气管道尤为重要。4) 管道机器人的越障能力在管道内,由于施工,维修或工艺等原因,一条管道不可能是光滑笔直的,这就需要管道机器人有越过障碍(如阀门、三通、弯管)的能力。另外,对于石油天然气管道运输行业而言,为适应社会发展需要,已逐步形成了城市管网、地区管网,甚至是整个世界能源运输管网,因此,目前的石油天然气管道已经不是单一的一条线路。为此,要想设计出能大范围应用的管内机器人,管道机器人在分叉点时的自动选择路径的能力应进行研究。5) 高度自治的控制系统对现有的管道机器人的研究仍然停留在管内运动、检测等方面,而对工程有实用价值的是管道机器人的管内运动、检测、修复一体化作业,因此必须考虑管道机器人的高度自治的实时检测修复功能,这将使管道机器人有显著的应用前景。1.4 管道X射线探伤技术最新进展在五大常规无损检测方法中,射线检测和超声检测是比较可靠和有效的管道焊缝检测方法。射线检测主要用于铸件及焊接件的检测,几乎适用于所有材料,对检测物体形状及表面粗糙度均无严格要求。射线检测对管道焊缝中的气孔、夹渣、疏松等体积型缺陷的检测灵敏度较高,对平面缺陷的检测灵敏度较低,如当射线方向与平面缺陷(如裂纹)垂直时就很难检测出来,只有当裂纹与射线方向平行时才能对其进行有效的检测。对此,为了弥补X射线探伤的一些缺陷,大量的研究对其进行了分析和优化。1.4.1 X射线照相检测技术目前,工程中应用的管道对接焊缝无损检测方法都是基于X射线检测技术的,如外部透照法,采用定向X射线源从管道外侧透照,在管道另一侧的胶片上感光成像,每道环形焊缝的检测需转换多次X射线源的投照角度。应用于小管径管道对焊缝的无损探伤,该方法存在双层壁投影而导致评片困难的特点。而又如内部透照法,智能移动载体携带周向X射线源进入管道,将X射线源焦点对准于管道环状焊缝处,如图1-13所示。该机器人采用CCD实现精确定位。图1-13 管道射线检测机器人Fig.1-3 the radial inspection pireline robot.1.4.2 X射线实时成像检测技术X射线实时成像检测技术主要有两大类:一种是基于X射线图像增强器的实时成像技术的,另一种是X射线数字实时成像检测技术。基于X射线图像增强器的实时成像技术如图1-14所示,1X射线源,2被检测件,3图像增强器,4图像采集卡,5计算机,被检测件的X射线图像经图像增强器成像后,由图像采集系统采集并传输到计算机中16。图1-14 基于图像增强器的X射线实时面像检测系统Fig.1-14 X-ray real-time imaging inspection system based on image intensifier一种是X射线数字实时成像检测技术,如图1-15所示,1X射线源,2被检测件,3计算机,4CMOS数字成像板,亦称为X射线数字照相。被检测件的X射线图像经由CMOS数字成像后,直接转化为数字信号并传输到计算机中。图1-15 X射线数字照相检测系统Fig.1-15 The sketch kf digital X-ray radiography system图像增强器诞生于20世纪50年代初,经过几十年的发展,主要是改进图像增强器输入屏材料以提高亮度。现在图像增强器的亮度增益提高了10几倍,亮度增益高达10000以上,输出屏上的图像亮度可达0.3x103cd/m2 17。虽然X射线数字实时成像检测技术的显像元件的像元尺寸达到极小,因而成像质量及分辨率优于基于图像增强器的X射线系统,但目前市场上的CMOS图像传感器,一直没有摆脱光照灵敏度低、信噪比低和图像分辨率低的缺点,且受该系统检测面积小、透照厚度薄痼素的影响,X射线数字实时成像检测技术的检测系统还只能应用于密度较小、尺寸也较小的被检工件。同时由于价格因素的影响,这种数字成像检测系统在国内工业中几乎还未得到使用。在国外,这种系统也在美国、德国等国家得到应用。尽管如比,随着CMOS技术的不断完善,X射线数字照相是X射线实时成像检测技术最终发展目标,也必将在我国得到应用。比较两种X射线实时成像检测技术,当采有微(小)焦点X射线机成像、高清晰度图像增强技术、高分辨率数字采集技术和计算机数字化图像处理技术、高分辨率图像显示技术以及采用投影放大的透照工艺时,并考虑到经济性,可以说,基于X射线图像增强器的实时成像技术,就目前技术水平而言,比X射线数字实时成像检测技术更具有工程意义,并且,其成像质量与胶片照相底片相当甚至更好。1.5本次设计的主要研究内容和研究意义本课题是针对中型管道安全检测探伤的实现而提出的,并结合当今机器人的发展趋势,利用现代先进科学技术,对管内X射线无损检测机器人的机械结构进行设计和优化,充分利用现代视觉传感器和人工智能方面的优势,对机器人的智能化做一些有意义的研究工作。其目的是通过对管道X射线无损检测探伤机器人设计,及相关技术的查阅和应用,能够研制一台具有良好的弯道通过能力、视觉定位能力并能适应较长距离检测作业的实用样机。课题要求该机器人能够实现基本的管内定位、视觉监测,要求适应管径范围较大,性能稳定,有良好的越障能力。本论文主要设计内置动力的履带式管内X射线无损检测机器人的机械结构。其主要内容为:1)通过查阅资料,了解管内机器人常用机构和先进技术,融合自己的知识,对内置动力源的管内X射线无损检测机器人总体设计提出方案和实现办法;并阐述机器人的结构、特点、工作原理;2)通过利用最优化设计和机械手册,并结合一些相似结构,对设计的机器人的总体结构进行分析和优化,让机体内耗减到最小,包括机构之间的摩擦,自身的重量,而有效的加强履带与管壁之间的接触面积,加大摩擦力,提高本体的牵引力和推动力;3)通过利用三维软件,将管道内检测机器人各机构进行建模,同时进行各部分的装配,目地是调整各配合部分、连接部分之间的配合尺寸,使各机构能够相互协调运动,使整个机体能够协调平稳的工作。其主要目标设计管内X射线无损检测机器人调整机构和驱动机构。绘制二维原理图和装备图,并进行引导和驱动机构的三维总体装配。通过对管道内X射线无损检测机器人设计,使我对各种机械机构的组合,及机械机构之间协调运动的实现有了更深层次的掌握,还能够利用所学的最优化设计,对机构进行合理优化;而且,设计的这种模块化检测机器人,可以灵活的安装、配对,可携带其它一种或多种检测仪器仪表进行管道检测,管道的材料也不会受到限制,实现检测和行走也是非常容易的。就是说这种机器人的通用性比较高,适应性比较强。2管内X射线检测机器人方案的确定管道机器人通常是由驱动器、移动机构、转向机构和工作装置等几部分组成。其中驱动机械和移动方式有较大程度上决定了机器人的整个机械结构。管道机器人的移动方式可以分为轮式、履带式、足式、蠕动式、螺旋式和流体推动式等,各自有各自的优缺点。2.1 管道机器人的驱动方式2.1.1 管道机器人的驱动方式由于管道机器人是在管道限定的环境里运行,尤其是在有弯曲的管道里运行,一方面,机器人在弯管(包括垂直管道)行走中要有足够的摩擦力来克服重力的影响,另一方面需要提供足够大的驱动力来克服各种阻力。驱动器的选择在很大程度上决定了管道机器人的体积、重量和性能指标。现在使用的驱动方式主要有:(1)电磁驱动。最常用的是微电机,微电机又分为有刷直流电机、无刷直流电机、步进电机和舵机等。步进电机、直流电机和无刷直流电机的主要区别在于它们的驱动方式。步进电机采用直接控制方式,它的主要命令和控制变量都是步阶位置(step position);直流电机则是以电机电压或电流作为控制变量,以位置或速度作为命令变量,小尺寸可以产生较大的扭矩。直流电机需要反馈控制系统,它会以间接方式控制电机位置,步进电机可以产生精确控制,一般采用开环方式。无刷直流电机以电子组件和传感器取代电刷,不但延长电机寿命和减少维护成本,而且也没有电刷产生的噪音,因此无刷直流电机可以达到更高的转速。对电机的控制比较成熟,目前小型电机常采用 PWM 控制方法,控制方法比较简单,精度比较高。(2)压电驱动。压电材料是一种受力即产生应变,在其表面出现与外力成比例电荷的材料,又称压电陶瓷。反过来,把一电场加到压电元件上,则压电元件产生应变,输出力或变位。通常压电元件的能量变换率高(约50%),驱动力大(3500N/cm2),响应速度快(几十毫秒),稳定性好,驱动精度高。故通常压电元件有两种驱动方式:一种是利用动态响应快的特点,作高频振动,把振动作为动力源;另一种是利用驱动力大、精度高的特点,驱动位移或力作为驱动源。(3)形状记忆合金。形状记忆合金是一种特殊的合金,其形状记忆效应产生的主要原因是相变,其相变是由可逆的热弹性马氏体的相变产生,一旦使他记忆了任意形状,当加热到某一适当的温度时,则恢复为变形前的形状。它的特点:一是变化率大,是普通金属的近十倍,达到 4mm 每100C;二是变位方向的自由度大,由两种金属片贴合而成的双金属片的变位方向只能是垂直于贴合面的方向,形状记忆合金是单一材料,没有方向的依赖性,可向任何方向变位,如做成线圈状扩大动作行程;三是在特定的温度下,变位急剧发生,并且具有温度的迟滞性,适合于开关动作。(4)超声波驱动是利用超声波振动作为驱动力,即由振动部分和移动部分组成,靠振动部分和移动部分之间的摩擦力来驱动的一种驱动器,它具有结构简单、体积小、响应快、力矩大,不需要减速就可以低速运行,常用于照相机快门的动作等。超声波驱动由三种驱动方式:振动方向变换型、行进波型和复合振动型,这两种驱动方式一般应用在微机器人上。(5)气动驱动。利用压缩空气驱动气动马达或气缸运动,适合潮湿恶劣的环境,不需要电源,但运动精度比较低。(6)人工肌肉是一种新型的气动橡胶驱动器(仿生物肌肉驱动),结构是由内部橡胶筒套及外部纤维编织网构成,当对橡胶筒套充气时,橡胶筒套因弹性变形压迫外部编织网,由于编织网刚度很大,限制其只能径向变形,直径变大,长度缩短。此时,如果将气动人工肌肉与负载相联,就会产生收缩力;反之,当放气时气动人工肌肉弹性回缩,直径变细,长度增加,收缩力减小,因此气动人工肌肉具有重量轻、输出力大、柔顺性好等特点。如图2-1所示,1橡胶筒套,2纤维层,3螺丝口部,其缺点是:(1)气动人工肌肉与传统气动执行元件相比行程小(气动人工肌肉空载时可达20%,有载时只可达到10%,而有的传统气缸可达到40%);(2)气动人工肌肉的变形为非线性环节,具有时变性,使准确控制其位移十分困难;(3)在工作过程中,气动人工肌肉自身温度会发生变化,随着温度的变化,其性能也会改变,这给高精度控制带来困难。图2-1 人工肌肉结构简图Fig.2-1 structure diagram of man-made muscle2.1.2驱动方式的选择本课题的管道机器人选用电磁驱动的驱动方式,采用微型直流电动机进行驱动,选用充电电池作为电源,即可避免机器人拖缆线,减轻机器人的重量,减轻机器人在管道内部运动的阻力。2.1.3 驱动电机的选择步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。本机构两个履带足由独立的步进电机驱动,目的是为了简化传动机构,使机构更加紧凑。设机器人直线行走阻力、爬坡阻力和拖线阻力分别为F1、F2、F3。本课题研究的管道机器入主要应用于硬质管道环境,直线行走时的地面变形阻力和外部行驶阻力可以忽略不计,故直线行走阻力只考虑履带装置运行内阻力。履带机构驱动力主要表现为履带与地面之间的摩擦力,即附着力。履带装置运行内阻力是由同步带和带轮,传动齿轮之间的摩擦阻力形成,一般可用以下经验公式计算:F1=kGg (2-1)式中: k内阻力系数; G机器人重; g重力加速度;内阻力系数可取0.03-0.07,考虑到本机构的实际情况,取0.06。设机器人机重G=15kg,则直线行走阻力:F1=9N。 其爬坡阻力为: (2-2)式中:G机器人重机器人爬坡坡度 则 F=73.5N设爬坡坡度为30,线缆重8kg,线长25m,与地面问摩擦系数0.4,则拖动一整根电缆所需要的拖线力F为31.4N。则机器人的总阻力为: =F+F+F (2-3)式中: F行走阻力 F爬坡阻力 F拖线所需的力则 F0=113.9N每只履带上的阻力F为:F=57N。 (2-4)履带足电机输出功率:P= (2-5)式中:T每支履带所受阻力钜n电机输出转速设带轮节径d=40mm,则每只履带所受阻力矩T为1.14Nm。假设机器人行进速度为6m/min,则电机输出转速n=48rpm。则 P=5.8(KW)=5.8(W)考虑到管内可能碰到比较恶劣的情况,而且为越障预留一些功率,以使其在拖线30m的情况下仍然可以比较轻松的攀爬障碍,取足够的安全系数,确定步进电机的步距角,静力矩和电流,并考虑电机的性价比和安装尺寸,选取适当的步进电机。2.2管道机器人的移动方式2.2.1机器人移动方式管道机器人的移动方式可以分为轮式、履带式、足式、蠕动式、螺旋式和流体推动式等(如图2-2)。A为轮式 ,B为履带式 ,C为足式, D为螺旋式,E为张紧式, F为流体推动式 ,G为蠕动式。图2-2 管道机器人的移动方式Fig.2-2 Locomotion mode of pipe robot轮式机器人以其运动的连续性、平稳性和车辆技术的成熟性而广为应用。然而对于轮式也还有限制:轮式越障碍能力比较差,牵引力相对履带式要小;在不平整地面环境下,运动不平稳,易倾斜;微型化比较难。履带式机器人具有牵引力大,抓地性好,适应地面环境能力强的特点,同等条件下,可以跨越的障碍是所有驱动方式中最大的。足式是一种模仿昆虫结构功能的移动方式,地形适应能力强,能越过较大的壕沟和台阶,其缺点是速度和效率低,转向比较困难,控制系统复杂,因为腿和地面的接触面积小而使得单位的压强太大,所以应用起来比较困难。日本用压电元件制成的足式步行机器人采用双压晶片型的压电元件,利用它的振动直接蹬着地面前进。如图2-3所示,1三叉支架,2三叉支架二。螺旋式机器人是利用旋转摩擦管壁产生推力。适合在管径很小的管道中运动,缺点是效率低,推力比较小。张紧式移动机构主要是适合在垂直管道或大坡度管道中运动,它通过可变形的机构始终张紧管壁,保持与管壁的紧配合。一般与其他移动方式(如轮式和履带式)结合使用,缺点是不能适合L型等没有圆弧过渡的弯道,适应得管道直径范围比较小。如图2-4所示,(适合直径85-105mm)。 图2-3 微型六足机器人 Fig.2-3 Hexapode micro-robot 图2-4 Sungkyunwan University 的管道机器人 Fig.2-4 Pipe robot of Sungkyunwan University流体推动式是一种无动力或被动式的移动方式,利用管道内的流动液体的动力运动,可以在管道不停止工作的状态下进行管道的检测,一般没有缆绳,因此不受行走距离的限制,缺点是难以控制速度和方向。蠕动式机器人是依靠柔性形体的变形产生移动,具有较大的吸引力,运用的驱动元件不同,但蠕动原理大致相同,对于不同的蠕动机理,蠕动规律及控制尚需深入研究,缺点是转向困难,速度和效率低,牵引力小。蠕动式有蛇行、仿蚯蚓等运动模型。2.2.2移动方式的选择由于管道内避的情况复杂,会有许多突起的障碍,管壁的环境也可能较泥泞,行走条件苛刻,因此选择履带式为管道机器人的移动方式本课题的履带式机器人具有以下特点:1)履带式移动机器人支撑面积大,接地比压小,适合于松软或泥泞场地作业,下陷度小,滚动阻力小,通过性能好;越野机动性能好,爬坡,越沟等性能均优于轮式移动机器人。2)履带式移动机器人转向半径极小,可以实现原地转向,其转向原理是靠两条履带之间的速度差即一侧履带减速或刹死而另一侧履带保持较高的速度来实现转向。3)履带支撑面上有履齿,不易打滑牵引附着性能好,有利于发挥较大的牵引力。4)履带式移动机器人具有良好的自复位和越障能力,带有履带臂的机器人可以像腿式机器人一样实现行走。当然,履带式移动机器人也存在一些不足之处,比如在机器人转向时,为了实现转大弯,往往要采用较大的牵引力,在转弯时会产生侧滑现象,所以在转向时对地面有较大的剪切破坏作用。2.3本课题设计的内容及注意的几个问题本课题设计的是利用X射线来完成对于油气管道的检测,其主要方面是对于管道机器人行走机构的设计。通过查阅相关资料和自身对知识的掌握,能够研制一台具有良好的弯道通过能力、越障碍能力、视觉定位能力并能适应较长距离检测及不同管径范围内作业的实用样机。

    注意事项

    本文(10论文正文 管道履带式机器人.docx)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开