欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    同济版大一高数下第十二章第四节函数展开成幂级数ppt课件.ppt

    • 资源ID:1661787       资源大小:988KB        全文页数:28页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    同济版大一高数下第十二章第四节函数展开成幂级数ppt课件.ppt

    1,高等数学,第三十一讲,2,第四节,两类问题:,在收敛域内,和函数,本节内容:,一、泰勒 ( Taylor ) 级数,二、函数展开成幂级数,函数展开成幂级数,第十二章,3,一、泰勒 ( Taylor ) 级数,其中,( 在 x 与 x0 之间),称为拉格朗日余项 .,则在,若函数,的某邻域内具有 n + 1 阶导数,此式称为 f (x) 的 n 阶泰勒公式 ,该邻域内有 :,4,为f (x) 的泰勒级数 .,则称,当x0 = 0 时, 泰勒级数又称为麦克劳林级数 .,1) 对此级数, 它的收敛域是什么 ?,2) 在收敛域上 , 和函数是否为 f (x) ?,待解决的问题 :,若函数,的某邻域内具有任意阶导数,5,定理1 .,各阶导数,则 f (x) 在该邻域内能展开成泰勒级数的充要,条件是,f (x) 的泰勒公式中的余项满足:,证明:,令,设函数 f (x) 在点 x0 的某一邻域,内具有,6,定理2.,若 f (x) 能展成 x 的幂级数, 则这种展开式是,唯一的 , 且与它的麦克劳林级数相同.,证: 设 f (x) 所展成的幂级数为,则,显然结论成立 .,7,二、函数展开成幂级数,1. 直接展开法,由泰勒级数理论可知,第一步 求函数及其各阶导数在 x = 0 处的值 ;,第二步 写出麦克劳林级数 , 并求出其收敛半径 R ;,第三步 判别在收敛区间(R, R) 内,是否为0.,骤如下 :,展开方法,直接展开法, 利用泰勒公式,间接展开法, 利用已知其级数展开式,的函数展开,8,例1. 将函数,展开成 x 的幂级数.,解:,其收敛半径为,对任何有限数 x , 其余项满足,故,( 在0与x 之间),故得级数,9,例2. 将,展开成 x 的幂级数.,解:,得级数:,其收敛半径为,对任何有限数 x , 其余项满足,10,泰勒多项式逼近,11,泰勒多项式逼近,12,类似可推出:,(P281 ),13,例3. 将函数,展开成 x 的幂级数, 其中m,为任意常数 .(P 283),解: 易求出,于是得 级数,由于,级数在开区间 (1, 1) 内收敛.,因此对任意常数 m,14,则,为避免研究余项 , 设此级数的和函数为,15,例3 附注 P284,16,称为二项展开式 .,说明:,(1) 在 x1 处的收敛性与 m 有关 .,(2) 当 m 为正整数时, 级数为 x 的 m 次多项式, 上式 就是代数学中的二项式定理.,由此得,17,对应,的二项展开式分别为 (P285),18,2. 间接展开法,利用一些已知的函数展开式及幂级数的运算性质,例1 将函数,展开成 x 的幂级数.,解: 因为,把 x 换成, 得,将所给函数展开成 幂级数.,19,例2,20,例3. 将,展成 x1 的幂级数.,解:,21,例4,将下列函数展开成 x 的幂级数,解:,x1 时, 此级数条件收敛,因此,22,例5. 将函数,展开成 x 的幂级数.,解:,从 0 到 x 积分, 得,定义且连续,区间为,利用此题可得,上式右端的幂级数在 x 1 收敛 ,所以展开式对 x 1 也是成立的,于是收敛,23,例6. 将,展开为 x 的幂级数.,解:,因此,24,例7. 将,展成,解:,的幂级数.,25,例8,26,内容小结,1. 函数的幂级数展开法,(1) 直接展开法, 利用泰勒公式 ;,(2) 间接展开法, 利用幂级数的性质及已知展开,2. 常用函数的幂级数展开式(以后可直接引用),式的函数 .,27,当 m = 1 时,28,思考与练习,函数,处 “有泰勒级数” 与 “能展成泰勒级,数” 有何不同 ?,提示: 后者必需证明,前者无此要求.,

    注意事项

    本文(同济版大一高数下第十二章第四节函数展开成幂级数ppt课件.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开