两点求直线方程ppt课件.ppt
直线的两点式方程,y=kx+b,y- y0 =k(x- x0 ),k为斜率, P0(x0 ,y0)为经过直线的点,k为斜率,b为截距,一、复习、引入,1). 直线的点斜式方程:,2). 直线的斜截式方程:,解:设直线方程为:y=kx+b,例1.已知直线经过P1(1,3)和P2(2,4)两点,求直线的方程,一般做法:,由已知得:,解方程组得:,所以:直线方程为: y=x+2,方程思想,举例,还有其他做法吗?,为什么可以这样做,这样做的根据是什么?,即:,得: y=x+2,设P(x,y)为直线上不同于P1 , P2的动点,与P1(1,3)P2(2,4)在同一直线上,根据斜率相等可得:,二、直线两点式方程的推导,已知两点P1 ( x1 , y1 ),P2(x2 , y2),求通过这两点的直线方程,解:设点P(x,y)是直线上不同于P1 , P2的点,可得直线的两点式方程:,kPP1= kP1P2,记忆特点:,1.左边全为y,右边全为x,2.两边的分母全为常数,3.分子,分母中的减数相同,推广,不是!,是不是已知任一直线中的两点就能用两点式 写出直线方程呢?,两点式不能表示平行于坐标轴或与坐标轴重合的直线,注意:,当x1 x2或y1= y2时,直线P1 P2没有两点式程.(因为x1 x2或y1= y2时,两点式的分母为零,没有意义),那么两点式不能用来表示哪些直线的方程呢?,?,三、两点式方程的适应范围,若点P1 (x1 , y1 ),P2( x2 , y2)中有x1 x2,或y1= y2,此时过这两点的直线方程是什么?,当x1 x2 时方程为: x x,当 y1= y2时方程为: y = y,例2:已知直线 l 与x轴的交点为A(a,0),与y轴的交点为B(0,b),其中a0,b0,求直线l 的方程,解:将两点A(a,0), B(0,b)的坐标代入两点式, 得:,即,所以直线l 的方程为:,四、直线的截距式方程,截距可是正数,负数和零,注意:,不能表示过原点或与坐标轴平行或重合的直线,直线与 x 轴的交点(o,a)的横坐标 a 叫做直线在 x 轴上的截距,是不是任意一条直线都有其截距式方程呢?,截距式直线方程:,直线与 y 轴的交点(b,0)的纵坐标 b 叫做直线在 y 轴上的截距, 过(1,2)并且在两个坐标轴上的截距相等的直线有几条?,解: 两条,例3:,那还有一条呢?,y=2x (与x轴和y轴的截距都为0),所以直线方程为:x+y-3=0,a=3,把(1,2)代入得:,设:直线的方程为:,举例,解:三条,(2) 过(1,2)并且在两个坐标轴上的截距的绝对值相等的直线有几条?,解得:a=b=3或a=-b=-1,直线方程为:y+x-3=0、y-x-1=0或y=2x,设,例4:已知角形的三个顶点是A(5,0),B(3,3),C(0,2),求BC边所在的直线方程,以及该边上中线的直线方程.,解:过B(3,-3),C(0,2)两点式方程为:,整理得:5x+3y-6=0,这就是BC边所在直线的方程.,五、直线方程的应用,BC边上的中线是顶点A与BC边中点M所连线段,由中点坐标公式可得点M的坐标为:,即,整理得:x+13y+5=0这就是BC边上中线所在的直线的方程.,过A(-5,0),M 的直线方程,M,中点坐标公式:,则,若P1 ,P2坐标分别为( x1 ,y1 ), (x2 ,y2)且中点M的坐标为(x, y).,B(3,-3),C(0,2) M,3)中点坐标:,1)直线的两点式方程,2)两点式直线方程的适应范围,小结,