欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    三角函数的图象与性质(3课时)ppt课件.ppt

    • 资源ID:1643171       资源大小:2.11MB        全文页数:53页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    三角函数的图象与性质(3课时)ppt课件.ppt

    1.4.1正弦、余弦函数的图象,三角函数,三角函数线,正弦函数余弦函数正切函数,正切线AT,1.4.1正弦、余弦函数的图象,P,M,A(1,0),T,sin=MP,cos=OM,tan=AT,正弦线MP,余弦线OM,复习回顾,正弦、余弦函数的图象,问题:如何作出正弦、余弦函数的图象?,途径:利用单位圆中正弦、余弦线来解决。,y=sinx x0,2,y=sinx xR,终边相同角的三角函数值相等,即: sin(x+2k)=sinx, kZ,描图:用光滑曲线 将这些正弦线的终点连结起来,利用图象平移,A,B,正弦、余弦函数的图象,正弦曲线,正弦、余弦函数的图象,余弦函数的图象,正弦函数的图象,y=cosx=sin(x+ ), xR,余弦曲线,(0,1),( ,0),( ,-1),( ,0),( 2 ,1),正弦曲线,形状完全一样只是位置不同,如何由正弦函数图像得到余弦函数图像?,正弦、余弦函数的图象,(0,0),( ,1),( ,0),( ,-1),( 2 ,0),五点画图法,五点法,正弦、余弦函数的图象,例1 (1)画出函数y=1+sinx,x0, 2的简图:,0 2 ,0,1,0,-1,0,1 2 1 0 1,o,1,-1,2,y=sinx,x0, 2,y=1+sinx,x0, 2,步骤:1.列表2.描点3.连线,正弦、余弦函数的图象,(2) 画出函数y= - cosx,x0, 2的简图:,0 2 ,1,0,-1,0,1,-1 0 1 0 -1,y= - cosx,x0, 2,y=cosx,x0, 2,已知三角函数值求角,已知 求,已知三角函数值求角,已知 求,一定吗?,归 纳,还有其他吗?,(1)在一个区间里找两个代表,(2)分别加上2k,已知三角函数值求角,已知 求 的范围。,1.4.2正、余弦函数的性质,( 2 ,0),( ,-1),( ,0),( ,1),要点回顾.,正弦曲线、余弦函数的图象,1)图象作法-,几何法,五点法,2)正弦曲线、余弦曲线,余弦曲线,(0,1),( ,0),( ,-1),( ,0),( 2 ,1),正弦曲线,(0,0),(1)定义域:,xR,(2)值域:,y -1,1,新课讲解.,正弦函数、余弦函数的性质,注意:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.,1.周期性的定义,对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有,f(x+T)=f(x),那么函数f(x)就叫做周期函数.非零常数T叫做这个函数的周期.,(一)关于周期性,例:求下列函数的周期,解:(1)cos(x+2)=cosx, 3cos(x+2)=3cosx 函数y= 3cosx,xR的周期为2,(2)设函数y=sin2x, xR的周期为T,则 sin2(x+T)=sin(2x+2T)=sin2x 正弦函数的最小正周期为2,(2)设函数 的周期为T,则,正弦函数的最小正周期为2,函数 的周期为4, y=sin2x ,xR的周期为,新课讲解.,正弦函数、余弦函数的性质,例3.求下列函数的周期:,一般结论:,-利用结论,P36.ex.1.2,新课讲解.,正弦函数、余弦函数的性质,结论:,(二)关于奇偶性(复习),一般地,如果对于函数f( x )的定义域内任意一个x,都有f(- x )= f( x ),那么就说f( x )是偶函数如果对于函数f( x )的定义域内任意一个x,都有f(- x )= -f( x ),那么就说f( x )是奇函数,1、_,则f(x)在这个区间上是增函数.,4.正弦余弦函数的单调性,函数,若在指定区间任取 ,,且 ,都有:,函数的单调性反映了函数在一个区间上的走向。,观察正余弦函数的图象,探究其单调性,2、_,则f(x)在这个区间上是减函数.,增函数:上升,减函数:下降,探究:正弦函数的单调性,曲线逐渐上升,sin的值由 增大到 。,当 在区间,上时,曲线逐渐下降, sin的值由 减小到 。,探究:正弦函数的单调性,正弦函数在每个闭区间,都是增函数,其值从1增大到1;,减函数,其值从1减小到1。,探究:余弦函数的单调性,曲线逐渐上升,cos的值由 增大到 。,曲线逐渐下降, sin的值由 减小到 。,探究:余弦函数的单调性,由余弦函数的周期性知:,其值从1减小到1。,其值从1增大到1 ;,分析:比较同名函数值的大小,往往可以利用函数的单调性,但需要考虑它是否在同一单调区间上,若是,即可判断,若不是,需化成同一单调区间后再作判断。,例4:利用三角函数的单调性,比较下列各组数的大小,解:,练习,先画草图,然后根据草图判断,练习,5.正弦函数的最大值和最小值,最大值:,当 时,,有最大值,最小值:,当 时,,有最小值,探究:余弦函数的最大值和最小值,最大值:,当 时,,有最大值,最小值:,当 时,,有最小值,必须,使原函数取得最大值的集合是,必须,使原函数取得最小值的集合是,1.求函数的最大值和最小值,因为有负号,所以结论要相反,的最大值,最大,最小,练习:求函数,正弦函数的单调性及单调区间,正弦函数的增区间是,余弦函数的单调性级单调区间,余弦函数的增区间是,例5.求函数的单调递增区间,y=sinz的增区间,原函数的增区间,求函数的单调增区间,求函数的单调增区间,增,减,减,增,变式练习,求函数的单调增区间,增,为了防止出错,以及计算方便,遇到负号要提出来,增,增,减,求函数的单调增区间,增,为了防止出错,以及计算方便,遇到负号要提出来,增,增,增,练习,6.对称轴和对称点:,1.4.3 正切函数的图象和性质,定义域,值域,最大值,最小值,奇偶性,单调性,y=sinx,y=cosx,函数,性质,R,R,-1,1,-1,1,仅当 时取得最大值1,仅当 时取得最大值1,仅当 时取得最小值-1,仅当 时取得最小值-1,奇函数,偶函数,复习回顾,单调性:,复习回顾,对称轴和对称点:,(1)正切曲线图象如何作:,几何描点法(利用三角函数线),正切函数的性质与图像,思考:画正切函数选取哪一段好呢?画多长一段呢?,正切函数的性质与图像,(三)奇偶性:,(二)周期性 :,问题:是否是最小的正周期呢?,正切函数的性质与图像,正切函数的性质与图像,(四)单调性:观察图像,思考:在整个定义域内是增函数么?,正切函数的性质与图像,(五)定义域、值域:,(六)关于对称点对称轴:从图象可以看出:无对称轴。 直线 为渐近线,对称点为零点及函数值不存在的点,即,应用提升,例1(书上P44例6有变动),解:,应用提升,应用提升,应用提升,小结回顾,正切函数的基本性质,课后作业,1书本P45练习,做书上.2P46习题A组6,7,8,9;B组2 做本子上,

    注意事项

    本文(三角函数的图象与性质(3课时)ppt课件.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开