多目标规划模型ppt课件.ppt
多目标规划方法,多目标规划解的讨论非劣解 多目标规划及其求解技术简介效用最优化模型 罚款模型约束模型 目标规划模型目标达到法目标规划方法目标规划模型目标规划的图解法 求解目标规划的单纯形方法多目标规划应用实例,多目标规划是数学规划的一个分支。研究多于一个的目标函数在给定区域上的最优化。又称多目标最优化。通常记为 MOP(multi-objective programming)。在很多实际问题中,例如经济、管理、军事、科学和工程设计等领域,衡量一个方案的好坏往往难以用一个指标来判断,而需要用多个目标来比较,而这些目标有时不甚协调,甚至是矛盾的。因此有许多学者致力于这方面的研究。1896年法国经济学家V.帕雷托最早研究不可比较目标的优化问题,之后,J.冯诺伊曼、H.W.库恩、A.W.塔克、A.M.日夫里翁等数学家做了深入的探讨,但是尚未有一个完全令人满意的定义。,3,求解多目标规划的方法大体上有以下几种:一种是化多为少的方法,即把多目标化为比较容易求解的单目标或双目标,如主要目标法、线性加权法、理想点法等;另一种叫分层序列法,即把目标按其重要性给出一个序列,每次都在前一目标最优解集内求下一个目标最优解,直到求出共同的最优解。对多目标的线性规划除以上方法外还可以适当修正单纯形法来求解;还有一种称为层次分析法,是由美国运筹学家沙旦于70年代提出的,这是一种定性与定量相结合的多目标决策与分析方法,对于目标结构复杂且缺乏必要的数据的情况更为实用。,多目标规划模型,(一)任何多目标规划问题,都由两个基本部分组成: (1)两个以上的目标函数; (2)若干个约束条件。,(二)对于多目标规划问题,可以将其数学模型一般地描写为如下形式:,一 多目标规划及其非劣解,式中: 为决策变量向量。,缩写形式:,有n个决策变量,k个目标函数, m个约束方程,则: Z=F(X) 是k维函数向量, (X)是m维函数向量; G是m维常数向量;,(1),(2),对于线性多目标规划问题,可以进一步用矩阵表示:,式中: X 为n 维决策变量向量; C 为kn 矩阵,即目标函数系数矩阵; B 为mn 矩阵,即约束方程系数矩阵; b 为m 维的向量,即约束向量。,多目标规划的非劣解,多目标规划问题的求解不能只追求一个目标的最优化(最大或最小),而不顾其它目标。对于上述多目标规划问题,求解就意味着需要做出如下的复合选择: 每一个目标函数取什么值,原问题可以得到最满意的解决? 每一个决策变量取什么值,原问题可以得到最满意的解决 ?,在图1中,max(f1, f2) .就方案和来说,的 f2 目标值比大,但其目标值 f1 比小,因此无法确定这两个方案的优与劣。 在各个方案之间,显然:比好,比好, 比好, 比好。,非劣解可以用图1说明。,图1 多目标规划的劣解与非劣解,9,而对于方案、之间则无法确定优劣,而且又没有比它们更好的其他方案,所以它们就被称为多目标规划问题的非劣解或有效解,其余方案都称为劣解。所有非劣解构成的集合称为非劣解集。,当目标函数处于冲突状态时,就不会存在使所有目标函数同时达到最大或最小值的最优解,于是我们只能寻求非劣解。,效用最优化模型 罚款模型 约束模型 目标规划模型,二 多目标规划求解技术简介,为了求得多目标规划问题的非劣解,常常需要将多目标规划问题转化为单目标规划问题去处理。实现这种转化,有如下几种建模方法。,是与各目标函数相关的效用函数的和函数。,方法一 效用最优化模型(线性加权法),(1),(2),思想:规划问题的各个目标函数可以通过一定的方式进行求和运算。这种方法将一系列的目标函数与效用函数建立相关关系,各目标之间通过效用函数协调,使多目标规划问题转化为传统的单目标规划问题:,在用效用函数作为规划目标时,需要确定一组权值 i 来反映原问题中各目标函数在总体目标中的权重,即:,式中, i 应满足:,向量形式:,方法二 罚款模型(理想点法),思想: 规划决策者对每一个目标函数都能提出所期望的值(或称满意值);通过比较实际值 fi 与期望值 fi* 之间的偏差来选择问题的解,其数学表达式如下:,或写成矩阵形式:,式中, 是与第i个目标函数相关的权重; A是由 (i=1,2,k )组成的mm对角矩阵。,理论依据 :若规划问题的某一目标可以给出一个可供选择的范围,则该目标就可以作为约束条件而被排除出目标组,进入约束条件组中。假如,除第一个目标外,其余目标都可以提出一个可供选择的范围,则该多目标规划问题就可以转化为单目标规划问题:,方法三 约束模型(极大极小法),15,方法四 目标规划模型(目标规划法),目标规划与线性规划相比,有以下优点: 1.线性规则只讨论一个线性目标函数在一组线性约束条件下的极值问题。 实际问题中,往往要考虑多个目标的决策问题,这些目标可能互相矛盾,也可能没有统一的度量单位,很难比较。目标规划就能够兼顾地处理多种目标的关系,求得更切合实际的解。 2.线性规划是在满足所有约束条件的可行解中求得最优解。而在实际问题中往往存在一些相互矛盾的约束条件,如何在这些相互矛盾的约束条件下,找到一个满意解就是目标规划所要讨论的问题。,16,3.线性规划问题中的约束条件是不分主次、同等对待的,是一律要满足的“硬约束”。而在实际问题中,多个目标和多个约束条件不一定是同等重要的,而是有轻重缓急和主次之分的,如何根据实际情况确定模型和求解,使其更合实际是目标规划的任务。4.线性规划的最优解可以说是绝对意义下的最优,为求得这个最优解,往往要花去大量的人力、物力和才力。而在实际问题中,却并不一定需要去找这种最优解。目标规划所求的满意解是指尽可能地达到或接近一个或几个已给定的指标值,这种满意解更能够满足实际的需要。因此可以认为,目标规划更能够确切描述和解决经济管理中的许多实际问题。目前目标规划的理论和方法已经在经济计划、生产管理、经营管理、市场分析、财务管理等方面得到广泛的应用。,三 目标规划方法,通过前面的介绍和讨论,我们知道,目标规划方法是解决多目标规划问题的重要技术之一。 这一方法是美国学者查恩斯(A.Charnes)和库伯(W.W.Cooper)于1961年在线性规划的基础上提出来的。后来,查斯基莱恩(U.Jaashelainen)和李(Sang.Lee)等人,进一步给出了求解目标规划问题的一般性方法单纯形方法。,目标规划模型目标规划的图解法求解目标规划的单纯形方法,目标规划模型,给定若干目标以及实现这些目标的优先顺序,在有限的资源条件下,使总的偏离目标值的偏差最小。,1.基本思想 :,2.目标规划的有关概念,例1:某一个企业利用某种原材料和现有设备可生产甲、乙两种产品,其中,甲、乙两种产品的单价分别为8万元和10万元;生产单位甲、乙两种产品需要消耗的原材料分别为2个单位和1个单位,需要占用的设备分别为1单位台时和2单位台时;原材料拥有量为11个单位;可利用的设备总台时为10单位台时。试问:如何确定其生产方案使得企业获利最大?,由于决策者所追求的唯一目标是使总产值达到最大,这个企业的生产方案可以由如下线性规划模型给出:求x1,x2,使,将上述问题化为标准后,用单纯形方法求解可得最佳决策方案为: (万元)。,生产甲、乙两种产品,有关数据如表所示。试求获利最大的生产方案?,但是,在实际决策时,企业领导者必须考虑市场等一系列其它条件,如:,超过计划供应的原材料,需用高价采购,这就会使生产 成本增加。应尽可能地充分利用设备的有效台时,但不希望加班。应尽可能达到并超过计划产值指标56万元。,这样,该企业生产方案的确定,便成为一个多目标决策问题,这一问题可以运用目标规划方法进行求解。, 根据市场信息,甲种产品的需求量有下降的趋势,因 此甲种产品的产量不应大于乙种产品的产量。,21,假定有L个目标,K个优先级(KL),n个变量。在同一优先级pk中不同目标的正、负偏差变量的权系数分别为kl+ 、kl- ,则多目标规划问题可以表示为:,目标规划模型的一般形式,目标函数,目标约束,绝对约束,非负约束,22,在以上各式中,kl+ 、kl- 分别为赋予pl优先因子的第 k 个目标的正、负偏差变量的权系数, gk为第 k个目标的预期值, xj为决策变量, dk+ 、dk- 分别为第 k 个目标的正、负偏差变量,,目标函数,目标约束,绝对约束,非负约束,目标规划数学模型中的有关概念。,(1)目标值和正、负偏差变量目标值是预先给定的某个目标的一个期望值。决策值是当决策变量选定以后,目标函数的对应值。实现值和目标值之间的差异称为偏差变量(事先无法确定的未知量),正偏差变量d +表示决策值超过目标值的部分,负偏差变量d -表示决策值未达到目标值的部分。 因为决策值不可能既超过目标值同时又未达到目标值,故有 d +d - =0成立。在引入了目标值和正、负偏差变量后,可以将原目标函数加上负偏差变量d - ,减去正偏差变量d + ,并其等于目标值,这样形成一个新的函数方程,把它作为一个新的约束条件,加入到原问题中去,称这种新的约束条件为目标约束。,(2) 绝对约束和目标约束 绝对约束,必须严格满足的等式约束和不等式约束,譬如,线性规划问题的所有约束条件都是绝对约束,不能满足这些约束条件的解称为非可行解,所以它们是硬约束。 目标约束,目标规划所特有的,可以将约束方程右端项看作是追求的目标值,在达到此目标值时允许发生正的或负的偏差 ,可加入正负偏差变量,是软约束。 线性规划问题的目标函数,在给定目标值和加入正、负偏差变量后可以转化为目标约束,也可以根据问题的需要将绝对约束转化为目标约束。,(3)目标函数凡满足目标约束和绝对约束的解,应如何判别它的优劣呢?从决策者的要求分析,它总希望得到的结果与规定的目标值之间的偏差愈小愈好,目标函数是按照各目标约束的正、负偏差变量和赋予相应的优先因子而构造的函数。当每一目标确定后,尽可能缩小与目标值的偏离。因此,目标函数只能是:,a) 要求恰好达到目标值,就是正、负偏差变量都要尽可能小,即,b) 要求不超过目标值,即允许达不到目标值,就是正偏差变量要尽可能小,即,c) 要求超过目标值,也就是超过量不限,但负偏差变量要尽可能小,即,基本形式有三种:,对于由绝对约束转化而成的目标约束,也可以根据需要,按照上面三种方式,将正、负偏差变量列入目标函数中去。,若要区别具有相同优先因子 pl 的目标的差别,就可以分别赋予它们不同的权系数i* ( i=1,2,k )。这些优先因子和权系数都由决策者按照具体情况而定。,(4)优先因子(优先等级)与权系数 一个规划问题,常常有若干个目标,决策者对各个目标的考虑,往往是有主次的。凡要求第一位达到的目标赋予优先因子 p1 ,次位的目标赋予优先因子 p2 ,并规定 pl pl+1 (l=1,2,.) 表示 pl 比 pl+1 有更大的优先权。即:首先保证p1 级目标的实现,这时可以不考虑次级目标;而p2级目标是在实现p1 级目标的基础上考虑的;依此类推。,目标规划问题的求解是分级进行的,首先要求满足子 p1 级目标的解;然后再保证 p2 级目标不被破坏的前提下依次类推。总之,是在不破坏上一级目标的前提下,实现下一级目标的最优。因此,这样最后求出的解就不是通常意义下的最优解,我们称它为满意解。之所以叫满意解,是因为对于这种来说,前面的目标是可以保证实现或部分实现的,后面的目标就不一定能保证实现。以上介绍的几个基本概念,实际上就是建立目标规划模型时必须分析的几个要素,把这些要素分析清楚了,目标规划的模型也就建立起来了。请看下面的例子。,29,例2:在例1中,如果决策者在原材料供应受严格控制的基础上考虑:首先是甲种产品的产量不超过乙种产品的产量;其次是充分利用设备的有限台时,不加班;再次是产值不小于56万元。并分别赋予这三个目标优先因子p1,p2,p3。试建立该问题的目标规划模型。,分析: 题目有三个目标层次,包含三个目标值。第一目标:p1d1+ ; 即产品甲的产量不大于乙的产量。 第二目标: p2(d2+ + d2-);即充分利用设备的有限台时,不加班;第三目标: p3d3- ; 即产值不小于56万元;,例2:在例1中,如果决策者在原材料供应受严格控制的基础上考虑:首先是甲种产品的产量不超过乙种产品的产量;其次是充分利用设备的有限台时,不加班;再次是产值不小于56万元。并分别赋予这三个目标优先因子p1,p2,p3。试建立该问题的目标规划模型。,解:根据题意,这一决策问题的目标规划模型是,31,例3、某厂计划在下一个生产周期内生产甲、乙两种产品,已知资料如表所示。(1)试制定生产计划,使获得的利润最大?,解:设生产甲产品: x1 ,乙产品: x2 ,(1),32,若在例3中提出下列要求: 1、完成或超额完成利润指标 50000元; 2、产品甲不超过 200件,产品乙不低于 250件; 3、现有钢材 3600吨必须用完。 试建立目标规划模型。,分析:题目有三个目标层次,包含四个目标值。 第一目标:p1d1- 第二目标:有两个要求即甲 d2+ ,乙 d3- ,但两个具有相同的优先因子,因此需要确定权系数。本题可用单件利润比作为权系数即 70 :120,化简为7:12。,第三目标:,33,所以目标规划模型为:,34,图解法同样适用两个变量的目标规划问题,但其操作简单,原理一目了然。同时,也有助于理解一般目标规划的求解原理和过程。,图解法解题步骤如下: 1、确定各约束条件的可行域。即将所有约束条件(包括目标约束和绝对约束,暂不考虑正负偏差变量)在坐标平面上表示出来; 2、在目标约束所代表的边界线上,用箭头标出正、负偏差变量值增大的方向;,目标规划的图解法,3、求满足最高优先等级目标的解; 4、转到下一个优先等级的目标,再不破坏所有较高优先等级目标的前提下,求出该优先等级目标的解; 5、重复4,直到所有优先等级的目标都已审查完毕为止; 6、确定最优解和满意解。,35,例4、用图解法求解目标规划问题,0,1 2 3 4 5 6 7 8,1 2 3 4 5 6,H,x2,x1,G,C,B,D,F,A,E,I,36,解:确定各个约束条件的可行域。在x1,x2坐标平面上,暂不考虑每个约束方程中的正、负偏差变量,将上述每一个约束方程用一条直线表示出来,再用两个箭头分别表示上述目标约束方程中的正、负偏差变量。如图所示,其中,阴影区域OAB为满足条件(3)的可行域。,37,接着先考虑具有最高优先等级的目标,即 。为了实现这个目标,必须 。从图可以看出,凡落在直线CD上的点都能体现。但如果同时满足条件(3),则只有线段CH上的点才能实现。这也就是说,在线段CH上的任何一点都能使最高优先等级目标 。其次考虑第二优先等级目标 。从图可以看出,直线EF与EF右上方的点均能实现 。若同时满足条件(3),则应为三角形AEI上的点能实现。但第二优先等级目标的实现应在不影响第一优先等级目标的前提下,显然,在三角形AEI中,只有线段CG上的点才能实现这一要求,这就是问题的解。于是,C,G两点及CG线段上的所有点(无穷多个)均是该问题的最优解。其中C点对应的解为: x1=0,x2=5.2083.G点对应的解为:x1=0.6250,x2=4.6875.,38,例5、已知一个生产计划的线性规划模型为,其中目标函数为总利润,x1, x2 为产品A、B 产量。现有下列目标: 1、要求总利润必须超过 2500 元; 2、考虑产品受市场影响,为避免积压, A、B的生产量不超过 60 件和 100 件; 3、由于甲资源供应比较紧张,不要超过现有量140。试建立目标规划模型,并用图解法求解。,39,解:以产品 A、B 的单件利润比 2.5 :1 为权系数,模型如下:,40,0,x2,0,x1,14012010080604020,20 40 60 80 100,A,B,C,D,E,41,确定各条件的可行域如图,0,x2,0,x1,14012010080604020,20 40 60 80 100,A,B,C,D,E,42,先考虑具有第一优先等级的目标,从图可以看出,在直线(1)上及其右上方区域的所有点均能实现此目标。其次考虑具有第二优先等级的目标,这分别为直线(3)上及其左方、直线(4)上及其下方。从图可以看出,同时满足第一、第二优先等级目标的点为三角形ABD上的点。,43,最后考虑具有第三优先等级的目标,而这需在直线(2)上及其左下方。显然,若使,必然违反的目标,即实现第三等级目标与实现第一等级目标相矛盾。为此,则需采取在满足第一等级目标实现的前提下,来寻求的最小值的办法。这也就是在三角形ABD内寻找距离直线(2)最近的点。从图可知,D点是到直线(2)距离最近的点,即D点实现了使目标函数总偏差的最小化。于是,确定D点的坐标x1=60,x2=58.3为所求的满意解。,44,检验:将上述结果带入模型,因 d1+d1- 0 ; d3+d3- 0 ;d2- =0, d2+存在; d4+ 0, d4-存在。所以,有下式: minZ=,将 x160, x2 58.3 带入约束条件,得,30601258.32499.62500;260+58.3=178.3 140;16060158.358.3 100,由上可知:若A、B的计划产量为60件和58.3件时,所需甲资源数量将超过现有库存。在现有条件下,此解为非可行解。为此,企业必须采取措施降低A、B产品对甲资源的消耗量,由原来的100降至78.5(140178.30.785),才能使生产方案(60,58.3)成为可行方案。,45,作业 某工厂因生产需要,欲采购一种原料,市场上这种原材料有两个等级,甲级单价2元/kg,乙级单价1元/kg,现要求总费用不超过200元,购得原料总量不少于100kg,其中甲级原料不少于50kg,问如何确定最好的采购方案。,