欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    数论(5)余数问题优质课教学设计完美版.doc

    • 资源ID:1600167       资源大小:111KB        全文页数:11页
    • 资源格式: DOC        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    数论(5)余数问题优质课教学设计完美版.doc

    教 案教师:_ 王鑫_ 学生:_ 刘竞琰 上课时间: 学生签字:_ 数论(五) 余数问题 【知识点概述】一、带余除法的定义及性质:1.带余除法的定义:一般地,如果a是整数,b是整数(b0),若有a÷b=qr,也就是ab×qr, 0rb;(1)当时:我们称a可以被b整除,q称为a除以b的商或完全商(2)当时:我们称a不可以被b整除,q称为a除以b的商或不完全商2.和余数相关的一些重要性质:(以下a,b,c均为自然数)性质1:余数小于除数性质2: 性质3:a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。 例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即前两个余数的和3+1. 当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数,即2.性质4:a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。例如:23,16除以5的余数分别是3和1,所以除以5的余数等于。 当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。例如:23,19除以5的余数分别是3和4,所以除以5的余数等于除以5的余数,即2.【注】对于上述性质3,4,我们都可以推广到多个自然数的情形,尤其是性质4,对于我们求一个数的n次方除以一个数的余数时非常的有用。二、数的同余1.同余定义若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:ab ( mod m )同余式读作:a同余于b,模m由同余的性质,我们可以得到一个非常重要的推论:若两个数a,b除以同一个数m得到的余数相同,则a,b的差一定能被m整除用式子表示为:如果有ab ( mod m ),那么一定有abmk,k是整数,即m|(ab)这个性质非常重要,是将同余问题与前面学过的整除问题相联系的纽带,一定要熟练掌握。例如:(1),因为 (2) ,因为 (3) ,因为由上面的(3)式我们可以得到启发,a可被m整除,可用同余式表示为例如,我们表示a是一个偶数,可以写为,表示b为一个奇数,可以写为我们在书写同余式的时候,总会想起我们最熟悉的等式,但是两者又不是完全相同,在某些性质上相似。 2.同余式的性质(其中a、b、c、d是整数,而m是自然数。)性质1:aa(mod m) (反身性)性质2:若ab ( mod m ),那么ba ( mod m ) (对称性)性质3:若ab ( mod m ),b c( mod m ),那么ac ( mod m ) (传递性)性质4:ab ( mod m ),cd ( mod m ),那么a±cb±d ( mod m ) (可加减性)性质5:若ab ( mod m ) ,cd ( mod m ),那么acbd ( mod m ) (可乘性)性质6:若ab ( mod m ) ,那么anbn(mod m),(其中n为自然数)性质7:若acbc ( mod m ),(c,m)1,那么ab ( mod m ) 三.弃九法在公元前9世纪,有个印度数学家名叫花拉子米,写有一本花拉子米算术,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的:例如:检验算式1234除以9的余数为11898除以9的余数为818922除以9的余数为4除以9的余数为7除以9的余数为0这些余数的和除以9的余数为2而等式右边和除以9的余数为3,那么上面这个算式一定是错的。上述检验方法恰好用到的就是我们前面所讲的余数的加法性质,即如果这个等式是正确的,那么左边几个加数除以9的余数的和再除以9的余数一定与等式右边和除以9的余数相同。而我们在求一个自然数除以9所得的余数时,常常不用去列除法竖式进行计算,只要计算这个自然数的各个位数字之和除以9的余数就可以了,在算的时候往往就是一个9一个9的找并且划去,所以这种方法被称作“弃九法”。原理:任何一个整数模9同余于它的各数位上数字之和。以后我们求一个整数被9除的余数,只要先计算这个整数各数位上数字之和,再求这个和被9除的余数即可。利用十进制的这个特性,不仅可以检验几个数相加、相减,对于检验相乘、相除和乘方的结果对不对同样适用注意:弃九法只能知道原题错误或有可能正确,但不能保证一定正确。例如:检验算式时,5除以9的余数为5,6除以9的余数为6,7除以9的余数为7,8除以9的余数为8,9除以9的余数为0,余数的和为26,除以9的余数为8,等式右边的和53除以9的余数也为8,虽然余数相同,但是很容易发现,所以弃九法只能告诉我们算式“一定是错的”或者“有可能是对的”。但是反过来,如果一个算式一定是正确的,那么它的等式2两端一定满足弃九法的规律。这个思想往往可以帮助我们解决一些较复杂的算式迷问题。四、中国剩余定理1.中国古代趣题:中国数学名著孙子算经里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。”此类问题我们可以称为“物不知其数”类型,又被称为“韩信点兵”。韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人。刘邦茫然而不知其数。 我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少? 首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。 孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。中国剩余定理(Chinese Remainder Theorem)在近代抽象代数学中占有一席非常重要的地位。2.核心思想和方法:对于这一类问题,我们有一套看似繁琐但是一旦掌握便可一通百通的方法,下面我们就以孙子算经中的问题为例,分析此方法:今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?题目中我们可以知道,一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。先由,即5和7的最小公倍数出发,先看35除以3余2,不符合要求,那么就继续看5和7的“下一个”倍数是否可以,很显然70除以3余1类似的,我们再构造一个除以5余1,同时又是3和7的公倍数的数字,显然21可以符合要求。最后再构造除以7余1,同时又是3,5公倍数的数字,45符合要求,那么所求的自然数可以这样计算:,其中k是从1开始的自然数。也就是说满足上述关系的数有无穷多,如果根据实际情况对数的范围加以限制,那么我们就能找到所求的数。例如对上面的问题加上限制条件“满足上面条件最小的自然数”,那么我们可以计算得到所求如果加上限制条件“满足上面条件最小的三位自然数”,我们只要对最小的23加上3,5,7即可,即23+105=128.【习题精讲】【例1】(难度级别 )一个两位数除310,余数是37,求这样的两位数。 【例2】(难度级别 )有一个整数,除39,51,147所得的余数都是3,求这个数。【例3】(难度级别 )求478×296×351除以17的余数。【例4】(难度级别 )求的余数 【例5】(难度级别 )用一个自然数去除另一个自然数,商为40,余数是16.被除数、除数、商、余数的和是933,求这2个自然数各是多少?【例6】(难度级别 )用弃九法检验乘法算式5483×9117是否正确。【例7】(难度级别 )已知2008被一些自然数去除,所得的余数都是10,那么这样的自然数共有多少个?【例8】(难度级别 )号码分别为101,126,173,193的4个运动员进行乒乓球比赛,规定每两人比赛的盘数是他们号码的和被3除所得的余数.那么打球盘数最多的运动员打了多少盘? 【例9】(难度级别 )一个小于200的自然数,被7除余2,被8除余3,被9除余1,这个数是多少?【例10】(难度级别 )一堆糖果,如果每2块分一堆剩1个,每3块分一堆剩1个.每10个分一堆也剩1个,且这堆糖果的个数在995000之间,求这堆糖果的个数?【例11】(难度级别 )求自然数的个位数字。【例12】(难度级别 )自然数的个位数字是多少?【例13】(难度级别 )若有一数介于300与400之间,以3除剩1,以8除剩5,以11除剩4。问此数为何?【例14】(难度级别 )有一个自然数,用它分别去除63,90,130都有余数,3个余数的和是25.这3个余数中最大的一个是多少?【例15】(难度级别 )一个数去除551,745,1133,1327这4个数,余数都相同.问这个数最大可能是多少?【例16】(难度级别 )将1,2,3,,30从左往右依次排列成一个51位数,这个数被11除的余数是多少?【例17】(难度级别 )已知三个连续自然数,它们都小于2002,其中最小的一个自然数能被13整除,中间的一个自然数能被15整除,最大的一个自然数能被17整除。那么,最小的一个自然数是多少?【例18】(难度级别 )已知,求n被9整除后所得的商的个位数字是几?【例19】(难度级别 )对于任意7个不同的整数,证明:其中一定存在2个数的和或差是10的倍数。【例20】(难度级别 )有2个三位数相乘的积是一个五位数,积的后四位是1031,第一个数各个位的数字之和是10,第二个数的各个位数字之和是8,求两个三位数的和【作业】1、求÷7的余数2、被除数、除数、商与余数之和是2143,已知商是33,余数是52,求被除数和除数。(四中小升初选拔试题)3、用弃九法检验算式运算是否正确:÷28997394594、有一个大于1的整数,除45,59,101所得的余数相同,求这个数的可能范围。5、一个两位数除以13的不完全商是6,除以11所得的余数是6,求这个两位数。6、有一列数排成一行,其中第一个数是3,第二个数是10,从第三个数开始,每个数恰好是前两个数的和,那么第1997个数被3除所得的余数是多少?7、若a为自然数,证明8、除以7的余数是多少(2008年101中学考题)9、 某个自然数被187除余52,被188除余52,那么这个自然数被22除的余数是多少?

    注意事项

    本文(数论(5)余数问题优质课教学设计完美版.doc)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开