欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    (全册)北师大版九年级数学上教学PPT课件.ppt

    • 资源ID:1573841       资源大小:17.79MB        全文页数:739页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    (全册)北师大版九年级数学上教学PPT课件.ppt

    ,1.1 菱形的性质与判定,第一章 特殊平行四边形,导入新课,讲授新课,当堂练习,课堂小结,第1课时 菱形的性质,最新北师大版九数学上全册优质教学课件的首先教学课件,1.了解菱形的概念及其与平行四边形的关系;2.探索并证明菱形的性质定理.(重点)3.应用菱形的性质定理解决相关问题.(难点),学习目标,问题:什么样的四边形是平行四边形?它有哪些性质呢?,平行四边形的性质:,边:对边平行且相等.对角线:相交并相互平分.角:对角相等,邻角互补.,导入新课,活动: 观察下列图片,找出你所熟悉的图形.,问题1: 观察上图中的这些平行四边形,你能发现它们有什么 样的共同特征?,平行四边形,菱形,菱形:有一组邻边相等的平行四边形叫做菱形.,讲授新课,菱形是特殊的平行四边形,它具有平行四边形的所有性质,但平行四边形不一定是菱形.,问题2: 菱形与平行四边形有什么关系?,平行四边形,菱形集合,平行四边形集合,1.做一做:请同学们用菱形纸片折一折,回答下列问题: 问题1:菱形是轴对称图形吗?如果是,它有几条对称 轴?对称轴之间有什么位置关系?,问题2:菱形中有哪些相等的线段?,2.发现菱形的性质:菱形是轴对称图形,有两条对称轴(对称轴直线AC和直线BD).菱形四条边都相等(AB=BC=CD=AD).菱形的对角线互相垂直(ACBD).,A,B,C,O,D,已知:如图,在菱形ABCD中,AB=AD,对角线AC与BD相交 于点O.求证:(1)AB = BC = CD =AD; (2)ACBD.,3.证明菱形性质:,证明:(1)四边形ABCD是菱形, AB = CD,AD = BC(菱形的对边相等). 又AB=AD; AB = BC = CD =AD.,(2)AB = AD, ABD是等腰三角形. 又四边形ABCD是菱形, OB = OD . (菱形的对角线互相平分) 在等腰三角形ABD中, OB = OD, AOBD, 即ACBD.,4.归纳结论,菱形是特殊的平行四边形,它除具有平行四边形的所有性质外,还有平行四边形所没有的特殊性质.,对称性:是轴对称图形.边:四条边都相等.对角线:互相垂直.,角:对角相等,邻角互补.边:对边平行且相等.对角线:相交并相互平分.,菱形的特殊性质,平行四边形的性质,A,B,D,C,a,h,(1)菱形的面积计算公式:S = ah.(2)菱形的面积计算公式:S = SABD+SBCD = AODB + CODB = ACDB.,O,例1:如右图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm. 求:(1)对角线AC的长度;(2)菱形ABCD的面积.,解: (1) 四边形ABCD是菱形,AC与BD相交 于点E. AED=90(菱形的对角线互相垂直), DE= BD = 10 = 5(cm) . (菱形的对角线互相平分), AE= =12(cm).AC=2AE=2 12= 24(cm)(菱形的对角 线互相平分).(2)如图,菱形ABCD的面积 = BD AC =120(cm2).,例2:如图,在菱形ABCD中,对角线AC与BD相交于点O,BAD=60,BD =6,求菱形的边长AB和对角线AC的长.解:四边形ABCD是菱形, ACBD(菱形的对角线互相垂直) OB=OD= BD = 6=3(菱形的对角线互相平分)在等腰三角形ABC中,BAD=60,ABD是等边三角形.AB = BD = 6.,在RtAOB中,由勾股定理,得OA2+OB2=AB2,OA = = =AC=2OA= (菱形的对角线相互平分).,1.填一填:根据右图填空(1)已知菱形的周长是12cm,那么它的边长是_.(2)菱形ABCD中ABC120 ,则BAC_.(3)菱形的两条对角线长分别为6cm和8cm,则菱形的边长是( )A.10cm B.7cm C. 5cm D.4cm,3cm,30,C,当堂练习,2.如图,在菱形ABCD中,对角线AC与BD 相交于点O. 已知AB=5cm,AO=4cm,求BD的长.,解:四边形ABCD是菱形, ACBD (菱形的两条对角线互相垂直). AOB=90. BO= =3(cm). BD=2BO=23=6(cm).,平行四边形,有一组邻边相等的平行四边形叫做菱形.,1.菱形是轴对称图形.,2.菱形的四条边相等.,3.菱形的对角线互相垂直平分.,菱形,定义,性质,课堂小结,见本课时练习,课后作业,1.1 菱形的性质与判定,第一章 特殊平行四边形,导入新课,讲授新课,当堂练习,课堂小结,第2课时 菱形的判定,1.理解并掌握菱形的两个判定方法.(重点)2.会用这些菱形的判定方法进行有关的证明和计算.(难点),学习目标,问题:什么是菱形?菱形有哪些性质?,菱形的定义:有一组邻边相等的平行四边形.菱形的性质:1. 轴对称图形.2. 四边相等.3. 对角线互相垂直平分.,导入新课,思考与动手:1.在一张纸上用尺规作图作出边长为10cm的菱形;2.想办法用一张长方形纸剪出一个菱形;3.利用长方形纸你还能想到哪些制作菱形的方法?请向同学们展示你的作品,全班交流.,做一做:先将一张长方形的纸对折,再对折,然后沿图中的虚线剪下,将纸展开,就得到了一个菱形.,(1),(2),(3),(4),你能说说这样做的道理吗?,问题:根据菱形的定义,邻边相等的平行四边形是菱形.除此之外,你认为还有什么条件可以判断一个平行四边形是菱形?,1.小明的想法,平行四边形的不少性质定理与判定定理都是互逆命题.受此启发,我猜想:四边相等的四边形是菱形,对角线垂直的平行四边形是菱形.,讲授新课,2.小颖的想法,我觉得,对角线互相垂直的平行四边形有可能是菱形.但“四边相等的平行四边形是菱形”实际上与“邻边 相等的平行四边形是菱形”一样.,你是怎么想的?你认为小明的想法如何?,已知:右图中四边形ABCD是平行四边形,对角线AC与BD相交于点O ,ACBD.求证:ABCD是菱形.,证明: 四边形ABCD是平行四边形. OA=OC. 又ACBD, BD是线段AC的垂直平分线. BA=BC. 四边形ABCD是菱形(菱形的定义).,对角线互相垂直的平行四边形是菱形.,试一试:对角线互相垂直的平行四边形是菱形吗?,定理运用格式:,四边形ABCD是平行四边形,又ACBD,四边形ABCD是菱形.(对角线互相垂直的平行四边形为菱形),小刚:分别以A、C为圆心,以大于 AC的长为半径作弧,两条弧分别相较于点B , D,依次 连接A、B、C、D四点.,议一议:已知线段AC,你能用尺规作图的方法作一个菱形ABCD,使AB为菱形的一条对角线?,C,A,B,D,想一想:1.你是怎么做的,你认为小刚的作法对吗? 2.怎么验证四边形ABCD是菱形?,提示:AB = BC=CD =AD,证明:AB=BC=CD=AD; AB=CD , BC=AD. 四边形ABCD是平行四边形(平行四边形的判定).又AB=BC,四边形ABCD是菱形 (菱形的定义).,已知:右图中四边形ABCD,AB=BC=CD=AD.求证:四边形ABCD是菱形.,四边相等的四边形是菱形.,定理的运用格式,AB=BC=CD=DA,四边形ABCD是菱形 (四边相等的四边形为菱形).,证明:在AOB中.AB= , OA=2,OB=1. AB2=AO2+OB2. AOB是直角三角形, AOB是直角. ACBD. ABCD是菱形 (对角线垂直的平行四边形是菱形).,例1:已知:如右图,在ABCD中,对角线AC与BD相交于点O,AB= ,OA=2,OB=1. 求证: ABCD是菱形.,典例精析,2,例2:已知:如图,在ABC, AD是角平分线,点E、F分别在AB、 AD上,且AE=AC,EF = ED.求证:四边形CDEF是菱形.,A,C,B,E,D,F,证明: 1= 2,又AE=AC, ACD AED (SAS). 同理ACFAEF(SAS) .CD=ED, CF=EF. 又EF=ED,四边形ABCD是菱形(四边相等的四边形是菱形).,1,1.下列条件中,不能判定四边形ABCD为菱形的是()A. ACBD ,AC与BD互相平分B. AB=BC=CD=DAC. AB=BC,AD=CD,AC BDD. AB=CD,AD=BC,AC BD,C,当堂练习,2.如下图,已知平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别交于点E、F,求证:四边形AFCE是菱形,A,B,C,D,E,F,O,1,2,证明: 四边形ABCD是平行四边形, AEFC.1=2.EF垂直平分AC,AO = OC . EO =FO.四边形AFCE是平行四边形.又EFAC 四边形AFCE是菱形.,有一组邻边相等的平行四边形叫做菱形.,定理1:对角线互相垂直的平行四边形 是菱形.,定理2:四边相等的四边形是菱形.,运用定理进行计算和证明.,菱形的判定,定义,定理,课堂小结,见本课时练习,课后作业,1.2 矩形的性质与判定,第一章 特殊平行四边形,导入新课,讲授新课,当堂练习,课堂小结,第1课时 矩形的性质,1.了解矩形的概念及其与平行四边形的关系;2.探索并证明矩形的性质定理.(重点)3.应用矩形的性质定理解决相关问题.(难点),学习目标,活动:观察下面的图形,它们都含有平行四边形,请把它们全部找出来.,问题:上面的平行四边形有什么共同的特征?,导入新课,活动:利用一个活动的平行四边形教具演示,使平行四边形的一个内角变化,请同学们注意观察.,矩形:有一个角是直角的平行四边形叫做矩形.,矩形,讲授新课,矩形是特殊的平行四边形,它具有平行四边形的所有性质,但平行四边形不一定是矩形.,平行四边形,矩形集合,平行四边形集合,活动探究:准备素材:直尺、量角器、橡皮擦、课本、铅笔盒等.(1)请同学们以小组为单位,测量身边的矩形(如书本,课桌,铅笔盒等)的四条边长度、四个角度数和对角线的长度及夹角度数,并记录测量结果.,(2)根据测量的结果,猜想结论.当矩形的大小不断变化时, 发现的结论是否仍然成立?(3)通过测量、观察和讨论,你能得到矩形的特殊性质吗?,A,B,C,D,O,物体,测量,(实物),(形象图),填一填 根据上面探究出来结论填在下面横线上.角:.对角线:.,A,B,C,D,四个角为90,相等,O,证明:(1)四边形ABCD是矩形. ABC=CDA,BCD=DAB(矩形的对角线) ABDC(矩形的对边平行). ABC+BCD=180. 又ABC = 90, BCD = 90.,证明性质:,已知:如右图,四边形ABCD是矩形,ABC=90,对角线AC与DB相较于点O.求证:(1)ABC=BCD=CDA=DAB=90;(2)AC=DB.,A,B,C,D,O,ABC=BCD=CDA=DAB =90.(2)四边形ABCD是矩形,AB=DC(矩形的对边相等).在ABC和DCB中,AB=DC,ABC=DCB,BC= CB,ABCDCB.AC=DB.,1.矩形的四个角都是直角. 2.矩形的对角线相等.,A,B,C,D,O,做一做:请同学们拿出准备好的矩形纸片,折一折,观察并思考.(1)矩形是不是中心对称图形? 如果是,那么对称中心是什么?(2)矩形是不是轴对称图形?如果是,那么对称轴有几条?,矩形的性质:对称性: .对称轴:.,轴对称图形,2条,归纳结论,矩形是特殊的平行四边形,它除具有平行四边形的所有性质外,还有平行四边形所没有的特殊性质.,对称性:是轴对称图形.角:四条角都是90.对角线:相等.,角:对角相等.边:对边平行且相等.对角线:相交并相互平分.,矩形的特殊性质,平行四边形的性质,已知:如右图,四边形ABCD是矩形,对角线AC与BD交于点E.证明:在RtABC中,BE= AC.,A,B,C,D,E,证明:四边形ABCD是矩形.AC = BD(矩形的对角线相等).BE= DE= BD,AE=CE= AC (矩形对角线相互平分),BE= AC.,直角三角形斜边上的中线等于斜边的一半.,练一练:根据右图填空,已知ABC中,ABC = 90,BD是斜边AC上的中线.(1)若BD=3cm,则AC =_cm;(2)若C = 30 ,AB = 5cm,则AC =_cm, BD = _cm.,D,6,10,5,例1:如图,在矩形ABCD中,两条对角线相交于点O,AOD=120,AB=2.5 ,求矩形对角线的长.,解:四边形ABCD是矩形. AC = BD(矩形的对角线相等). OA= OC= AC,OB = OD = BD ,(矩形对角线相互平分)OA = OD.,A,B,C,D,O,典例精析,AOD=120,ODA=OAD= (180- 120)=30.又DAB=90 ,(矩形的四个角都是直角) BD = 2AB = 2 2.5 = 5.,提示:AOD=120 AOB=60 OA=OB=AB AC=2OA=22.5=5.,你还有其他解法吗?,例2:如图,在矩形ABCD中,E是BC上一点,AE=AD,DFAE ,垂足为F.求证:DF=DC.,A,B,C,D,E,F,证明:连接DE.AD =AE,AED =ADE.四边形ABCD是矩形,ADBC,C=90.ADE=DEC, DEC=AED.又DFAE, DFE=C=90.,又DE= DE,DFEDCE,DF=DC.,1.如图,在矩形ABCD中,对角线AC , BD交于点O ,已知AOB=60 , AC=16,则图中长度为8的线段有( )A.2条 B.4条 C.5条 D.6条,D,A,B,C,D,O,60,当堂练习,2.如图,四边形ABCD是矩形,对角线AC,BD相交于点O,BEAC交DC的延长线于点E.(1)求证:BD=BE,(2)若DBC=30 , BO=4 ,求四边形ABED的面积.,A,B,C,D,O,E,(1)证明:四边形ABCD是矩形.AC= BD,ABCD.又BEAC,四边形ABEC是平行四边形,AC=BE,BD=BE.,(2)解:在矩形ABCD中,BO=4,BD = 2BO =24=8.DBC=30,CD= BD= 8=4,AB=CD=4,DE=CD+CE=CD+AB=8.在RtBCD中,BC=四边形ABED的面积=(4+8)= .,A,B,C,D,O,E,平行四边形,1.矩形是轴对称图形和中心对称图形,2.矩形四个角都是直角,3.矩形的对角线相等且相互平分,矩形,性质,有一个角是直角,转换,直角三角形,等腰三角形,课堂小结,见本课时练习,课后作业,1.2 矩形的性质与判定,第一章 特殊平行四边形,导入新课,讲授新课,当堂练习,课堂小结,第2课时 矩形的判定,1理解并掌握矩形的判定方法(重点)2能应用矩形判定解决简单的证明题和计算题.(难点),学习目标,问题: 什么是矩形?矩形有哪些性质?,A,B,C,D,O,矩形:有一个角是直角的平行四边形.矩形性质:是轴对称图形; 四个角都是直角; 对角线相等且平分.,导入新课,活动1: 利用一个活动的平行四边形教具演示,拉动一对不相邻的顶点时, 注意观察两条对角线的长度.,问题1:我们会看到对角线会随着变化而变化,当两条对角线长度相等时,平行四边形有什么特征?,讲授新课,已知:如图,在ABCD中,AC , DB是它的两条对角线, AC=DB.求证:ABCD是矩形.证明:AB = DC,BC = CB,AC = DB, ABCDCB , ABC = DCB. ABCD, ABC + DCB = 180, ABC = 90, ABCD是矩形(矩形的定义).,猜想:当对角线相等时,该平行四边形可能是矩形.,对角线相等的平行四边形是矩形.,活动2: 李芳同学通过画“边直角、边直角、边直角、边”这样四步画出一个四边形.,问题2:李芳觉得按照以上步骤可以得到一个矩形?你认为她的判断正确吗?如果正确,你能证明吗?,已知:如图,在四边形ABCD中,A=B=C=90.求证:四边形ABCD是矩形.,猜想:当三个角都是直角,该四边形可能是矩形.,证明: A=B=C=90,A+B=180,B+C=180.ADBC,ABCD.四边形ABCD是平行四边形.四边形ABCD是矩形.,有三个角是直角的四边形是矩形.,例1:如图,在ABCD中,对角线AC与BD相交于点O , ABO是等边三角形, AB=4,求ABCD的面积.解:四边形ABCD是平行四边形,OA= OC,OB = OD.又ABO是等边三角形,OA= OB=AB= 4,BAC=60.AC= BD= 2OA = 24 = 8.,典例精析,ABCD是矩形 (对角线相等的平行四边形是矩形).ABC=90(矩形的四个角都是直角) . 在RtABC中,由勾股定理,得AB2 + BC2 =AC2 , BC= .SABCD=ABBC=4 =,例2:如图,在ABC中, AB=AC,D为BC上一点,以AB,BD为邻边作平行四边形ABDE,连接AD , EC.(1)求证:ADCECD;(2)若BD=CD,求证:四边形ADCE是矩形.,证明:(1)ABC是等腰三角形,B=ACB.又四边形ABDE是平行四边形,B=EDC,AB=DE,ACB=EDC,ADCECD.,(2)AB=AC,BD=CD,ADBC,ADC=90.四边形ABDE是平行四边形,AE平行且等于BD,即AE平行且等于DC,四边形ADCE是平行四边形.而ADC=90,四边形ADCE是矩形.,1.如图,直线EFMN,PQ交EF、MN于A、C两点,AB、CB、CD、AD分别是EAC、 MCA、 ACN、CAF的角平分线,则四边形ABCD是( ) A.菱形 B.平行四边形 C.矩形 D.不能确定,C,当堂练习,2.如图,O是菱形ABCD对角线的交点,作BEAC,CEBD,DE、CE交于点E,四边形CEBO是矩形吗?说出你的理由.,D,A,B,C,E,O,解:四边形CEDO是矩形.理由如下:已知四边形ABCD是菱形. ACBD. BOC=90. DEAC,CEBD, 四边形CEDO是平行四边形. 四边形CEBO是矩形(矩形的定义).,有一个角是直角的平行四边形是矩形.,定理1:对角线相等的平行四边形是矩形.,定理2:有三个角是直角的四边形是矩形.,运用定理进行计算和证明.,矩形的判定,定义,定理,课堂小结,见本课时练习,课后作业,1.3 正方形的性质与判定,第一章 特殊平行四边形,导入新课,讲授新课,当堂练习,课堂小结,第1课时 正方形的性质,1.了解正方形的定义及其与平行四边形的关系.2.探索并证明正方形的性质定理.(重点)3.应用正方形的性质定理解决相关问题.(难点),学习目标,活动:观察这些图片,你什么发现?正方形四条边有什么关系?四个角呢?,导入新课,活动1:准备一张矩形的纸片,按照下图折叠,然后展开,得到一个四边形.,问题1:折叠后得到的特殊四边形是什么四边形?,正方形,讲授新课,活动2:把可以活动的菱形框架的一个角变为直角,观察这时菱形框架的形状.,问题2:经过变化后得到特殊四边形是什么四边形?,有一组邻边相等,并且有一个角是直角的平行四边形是正方形.,正方形,A,B,C,D,填一填:角: 边:对角线: 对称性:,四个角都是直角.,四条边相等.,对角线相等且互相垂直平分.,a,a,a,a,轴对称图形(4条对称轴).,1.正方形的四个角都是直角,四条边相等.2.正方形的对角线相等且互相垂直平分.,已知:如右图,四边形ABCD是正方形.求证:正方形ABCD四边相等,四个角都是直角.,A,B,C,D,证明:四边形ABCD是正方形.A=90, AB=AC . (正方形的定义)又正方形是平行四边形.正方形是矩形, (矩形的定义) 正方形是菱形.(菱形的定义)A=B =C =D = 90, AB= BC=CD=AD.,定理证明,已知:如右图,四边形ABCD是正方形.对角线AC、BD相交于点O.求证:AO=BO=CO=DO,ACBD.,A,B,C,D,O,请同学们动手完成以上证明?,提示:可以先通过证明来得到正方形是矩形、菱形,然后利用矩形和菱形的定理来完成该题.,想一想: 正方形是矩形吗?是菱形吗?,矩形,菱形,正方形,平行四边形,正方形是特殊的平行四边形,也是特殊的矩形,也是特殊的菱形.所以平行四边形、矩形、菱形有的性质,正方形都有.,归纳结论,正方形,对角线,边,边,对角线,对角线,角,对边平行且相等,相互平分,相等,四个角相等都是90,相互垂直且平分对角,四边相等,对称性,轴对称图形(4条对称轴),例1:如图在正方形ABCD中,E为CD上一点,F为BC边延长线上一点,且CE=CF. BE与DF之间有怎样的关系?请说明理由.,典例精析,解:BE=DF,且BEDF.理由如下:(1)四边形ABCD是正方形.BC=DC,BCE =90 .(正方形的四条边都相等,四个角都是直角)DCF=180-BCE=180-90=90.,A,B,D,C,F,E,A,B,D,F,E,BCE=DCF.又CE=CF.BCEDCF.BE=DF.(2)延长BE交DE于点M,BCEDCF ,CBE =CDF.DCF =90 ,CDF +F =90.CBE+F=90 , BMF=90.BEDF.,C,M,例2:如图,已知四边形ABCD是正方形,对角线AC与BD相交于点O , MNAB ,且分别于OA , OB相交于点M , N.求证:(1)BM = CN;(2)BMCN.,证明:(1)MNAB. 1 =2 =3 =4 = 45. OM = ON. OA= OB, OA- OM = OB - ON,AM=BN. 又2=NBC,AB=BC. ABM BCN(SAS) BM=CN.,1,2,3,4,(2)延长CN交线段MB于点Q.ABMBCN.6=8.OCB =ABO =45.5=7.又ONC=QNB.180-5 -ONC = 180-7 -QNB,CON =NQB = 90.BMCN.,Q,5,7,6,8,1在正方形ABC中,ADB= ,DAC= , BOC= .2.在正方形ABCD中,E是对角线AC上一点,且AE=AB,则EBC的度数是 .,45,90,22.5,第1题,第2题,45,当堂练习,3.如图,已知正方形ABCD ,以AB为边向正方形外作等边ABE,连结DE 、 CE ,求DEC的度数.,D,A,E,B,C,解:ABE是等边三角形. AB =AE=BE, ABE=BEA=EAB =60. 又四边形ABCD是正方形. AD=BC=AE=BE, DAB=ABC=90. DAE=CBE=150. AED=EDA=CEB=BCE=15. DEC=AEB-AED-CEB=30.,1.四个角都是直角,2.四条边都相等,3.对角线相等且互相垂直平分,正方形,性质,定义,有一组邻相等,并且有一个角是直角的平行四边形叫做正方形,课堂小结,见本课时练习,课后作业,1.3 正方形的性质与判定,第一章 特殊平行四边形,导入新课,讲授新课,当堂练习,课堂小结,第2课时 正方形的判定,1掌握正方形的判定方法(重点)2会运用正方形的判定条件进行有关的论证和计算 .(难点),学习目标,问题1:什么是正方形?正方形有哪些性质?,A,B,C,D,正方形:有一组邻边相等,并且有一个角是直角的平行四边形.正方形性质:四个角都是直角; 四条边都相等; 对角线相等且互相垂直平分.,O,导入新课,问题2:你是如何判断是矩形、菱形?,平行四边形,矩形,菱形,四边形,三个角是直角,四条边相等,定义,三个判定定理,定义,对角线相等,定义,对角线垂直,动一动:过点A作射线AM的垂线AN,分别在AM , AN上取点B , D ,使AB=AD ,作DCAB , BCAD ,得四边形ABCD.,A,M,N,B,D,C,问题1:上面所画四边形ABCD是正方形吗?为什么?,讲授新课,想一想:将矩形纸片对折两次,怎样裁剪才能使剪下的三角形展开后是个正方形?,(1),(2),(3),(4),菱形,问题2:满足怎样条件的矩形是正方形?,矩形,正方形,一组邻边相等,对角线互相垂直,问题3:满足怎样条件的菱形是正方形?,正方形,一个角是直角,对角线相等,1.对角线相等的菱形是正方形.2.对角线垂直的矩形是正方形.3.有一个角是直角的菱形是正方形.,正方形判定的两条途径:,正方形,正方形,+,+,先判定菱形,先判定矩形,矩形条件,菱形条件,(1),(2),一个直角,对角线相等,一组邻边相等,对角线垂直,例1:如图,在矩形ABCD中, BE平分ABC , CE平分DCB , BFCE , CFBE.求证:四边形BECF是正方形.,典例精析,F,A,B,E,C,D,解析:先由两组平行线得出四边形BECF平行四边形;再由一个直角,得出是矩形;最后由一组邻边相等可得正方形;,45,45,F,A,B,E,C,D,证明: BFCE,CFBE, 四边形BECF是平行四边形. 四边形ABCD是矩形, ABC = 90, DCB = 90, BE平分ABC, CE平分 DCB, EBC = 45, ECB = 45, EBC = ECB . EB=EC, BECF是菱形 . 在EBC中 EBC = 45,ECB = 45, BEC = 90, 菱形BECF是正方形.,例2:已知:如图所示,在RtABC中, C=90 , BAC , ABC的平分线于点D , DEBC于点E , DFAC于点F.求证:四边形CEDF是正方形.,证明: 如图所示,过点D作DGAB于点G.DFAC , DEBC ,DFC=DEC=90.又C=90,四边形CEDF是矩形 (有三个角是直角的四边形是矩形).AD平分BAC , DFAC , DGAB.DF=DG. 同理可得 DE=DG , DE=DF.四边形CEDF是正方形(有一组邻边相等的矩形是正方形).,C,E,B,A,F,D,G,例3:如图,EG,FH过正方形ABCD的对角线的交点O,且EGFH.求证:四边形EFGH是正方形.证明:四边形ABCD为正方形,OB=OC,ABO=BCO =45,BOC=90=COH+BOH.EGFH,BOE+BOH=90,COH=BOE,CHO BEO,OE=OH.同理可证:OE=OF=OG,OE=OF=OG=OH.又EGFH,四边形EFGH为菱形.EO+GO=FO+HO ,即EG=HF,四边形EFGH为正方形.,做一做:顺次连接任意四边形各边中点所得的四边形是平行四边形.顺次连接矩形、正方形各边中点能得到怎样的特殊平行四边形?,矩形,正方形,任意四边形,平行四边形,菱形,正方形,E,F,G,H,E,F,G,H,E,F,G,H,1.下列命题正确的是( ) A.四个角都相等的四边形是正方形 B.四条边都相等的四边形是正方形 C.对角线相等的平行四边形是正方形 D.对角线互相垂直的矩形是正方形2四个内角都相等的四边形一定是( ) A.正方形 B.菱形 C.矩形 D.平行四边形,D,C,当堂练习,3.如图,在四边形ABCD中, AB=BC ,对角线BD平分ABC , P是BD上一点,过点P作PMAD , PNCD ,垂足分别为M、N. (1) 求证:ADB=CDB; (2) 若ADC=90,求证:四边形MPND是正方形.,证明:(1)AB = BC,BD平分ABC. 1=2. ABDCBD (AAS). ADB=CDB.,1,2,(2)ADC=90; 又PMAD,PNCD; PMD=PND=90. 四边形NPMD是矩形. ADB=CDB; ADB=CDB=45. MPD=NPD=45. DM=PM,DN=PN. 四边形NPMD是矩形(有一组邻边相等的矩形是正方形).,有一个角是90(或对角线互相垂直),有一对邻边相等(或对角线相等),平行四边形,矩形,菱形,正方形,一组邻边相等且一个内角为直角(或对角线互相垂直平分且相等),有一个角是90(或对角线互相垂直),有一对邻边相等(或对角线相等),课堂小结,见本课时练习,课后作业,复习与小结,第一章 特殊平行四边形,知识网络,要点归纳,典例精析,课后作业,有一个角是90(或对角线互相垂直),有一对邻边相等(或对角线相等),平行四边形,矩形,菱形,正方形,一组邻边相等且一个内角为直角(或对角线互相垂直且相等),有一个角是90(或对角线互相垂直),有一对邻边相等(或对角线相等),知识网络,平行且相等,平行且相等,平行且四边相等,平行且四边相等,对角相等邻角互补,四个角都是直角,对角相等邻角互补,四个角都是直角,互相平分,互相平分且相等,互相垂直平分且相等,每一条对角线平分一组对角,中心对称图形,中心对称图形轴对称图形,中心对称图形轴对称图形,中心对称图形轴对称图形,互相垂直且平分,每一条对角线平分一组对角,要点归纳,定义:两组对边分别平行 两组对边分别相等一组对边平行且相等 对角线互相平分,定义:有一外角是直角的平行四边形 三个角是直角的四边形对角线相等的平行四边形,定义:一组邻边相等的平行四边形 四条边都相等的四边形对角线互相垂直的平行四边形,定义:一组邻边相等且有一个角是直角的平行四边形有一组邻边相等的矩形 有一个角是直角的菱形,例1:如图,两张等宽的纸条交叉重叠在一起,猜想重叠部分的四边形ABCD是什么形状?说说你的理由.,A,B,C,D,E,F,解:四边形ABCD是菱形.过点C作AB边的垂线交点E,作AD边上的垂线交点F.S 四边形ABCD=AD CF =AB CE .由题意可知 CE = CF 且 四边形ABCD是平行四边形.AD = AB . 四边形ABCD是菱形.,典例精析,例2:如图所示,下面有一张菱形纸片ABCD中,两条对角线AC= ,BD= 4 .,(1)菱形ABCD的面积 ;(2)菱形ABCD的周长 ;(3)ADC的度数 .,D,A,C,B,O,16,120,例3:工人师傅做铝合金窗框分三个步骤进行下面:(1)先截出两对符合规格的铝合金窗料,使AB=CD,EF=GH.,A,B,D,C,E,F,H,G,(2)摆成如图所示的四边形,则这时窗框的形状是 ,根据的数学道理:.,平行四边形,两组对边相等的四,边形是平行四边形,(3)将直角尺靠紧窗框的一个角,调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时,说明窗框合格,这时窗框是 .形,根据的数学道理是 .,矩,有一个角是直角的平行四边形是矩形,若这个铝合金窗框ABCD两条对角线的夹角AOB为60 , AOB的周长为3 m.(1)求窗框对角线AC长;,A,B,C,D,60,解:(1)四边形ABCD是矩形. AC = BD = 2OA = 2OB. 又AOB = 60. AOB是等边三角形. OA = OB = AB =1(m). AC = 2OA = 2(m).,O,(2)求窗框ABCD的面积.解:(2)已知AC= 2 m , AB = DC = 1m.又四边形ABCD是矩形. S 四边形ABCD=AD DC , ADC 是直角三角形. S 四边形ABCD=,A,B,C,D,60,O,例4: (1)如果想得到一个正方形,该怎么剪?,(1),(2),(3),(4),(2)若E为对角线上一点,连接EA、EC.EA=EC 吗?说说你的理由,A,B,C,D,E,解:已知四边形ABCD是正方形.ABE = CBE = 45, AB = CB .ABE CBE ( SAS ). EA = EC.,1.检查一个门框是矩形的方法是( ) A.测量两条对角线是否相等.B.测量有三个角是直角. C.测量两条对角线是否互相平分. D.测量两条对角线是否互相垂直.2.顺次连接矩形各边中点所得的四边形是( ) A.矩形 B.菱形 C.梯形 D.正方形,B,B,3.菱形的周长等于高的8倍,则其最大内角等于( ) A.60 B.90 C.120 D.150 4.矩形ABCD中,AB=8, BC=6 , E、F是AC的三等分点,则BEF的面积是( ) A.8 B.12 C.16 D.24,D,A,C,第5题,第6题,5.菱形的对角线长为6和8,则菱形的边长 ,面积是. 6.矩形的对角线长为8,两对角线的夹角为60 ,则矩形的两邻边 分别长和.,5,24,4,A,B,C,D,O,A,B,C,D,O,第3题,第4题,7.已知:ABCD,添加适当的条件(1)使它成为菱形.条件: .(2)使它成为矩形.条件: .(3)使它成为正方形.条件: .,A,B,C,D,O,AB=AD (ACBD),AC=BD(BAD=90),AC=BD且ACBD,2.1 认识一元二次方程,第二章 一元二次方程,导入新课,讲授新课,当堂练习,课堂小结,第1课时 一元二次方程,1.了解一元二次方程的概念;(重点)2.掌握一元二次方程的一般形式ax2+bx+c=0(a, b, c为常数,a0). (重点)3.能根据具体问题的数量关系,建立一元二次方程的模型.(难点),学习目标,根据下面的问题,设一个未知数,列出方程,不需解方程.问题1:若一个正方形花坛的面积为64m2,则正方形的边长为多少m? 问题2:某小区计划在楼间空地建造一个面积为120m2的长方形绿地,且长比宽多10m,那么这个长方形绿地的宽为多少m?,64m2,120m2,解:设正方形的边长为 x m.x2 = 64.,解:设长方形绿地的宽为 x m,则长为(x+10)m.x(x+10) = 120.,导入新课,问题1:请通过类比一元一次方程一般形式(ax + b = 0),对下面所得方程进行整理. (1) x2 = 64; (2)x(x + 10) = 1200.,(1) x2 64 = 0 ;(2) x2 + 10 x 1200 = 0.,问题2:上述两个方程有什么共同特点?1.只含有一个未知数; 2.未知数的最高次数是2;3.整式方程,讲授新课,只含有一个未知数x的整式方程,并且都可以化为ax2+bx+c=0(a,b,c为常数, a0)的形式,这样的方程叫做一元二次方程.,一元二次方程的一般形式:,ax2+bx +c = 0(a , b , c为常数, a0),ax2 称为二次项, a 称为二次项系数. bx 称为一次项,b 称为一次项系数. c 称为常数项.,若a0,那么最好在方程的左右两边同乘以-1,使二次项系数变为正整数;指出一元二次方程的各个系数时,一定要带上前面的符号.,练一练,1.关于x的方程(k - 3) x2 +2x - 1=0,当k 时,是一元二次方程2.关于x的方程(k2 - 1) x2 +2 (k - 1) x + 2k + 2 = 0,当k 时,是一元二次方程.当k 时,是一元一次方程,ax2+bx+c=0 (a,b,c为常数,a0)称为一元二次方程的一般形式;当a=0,b0时称为一元一次方程的一般形式,3,1,=-1,例1:幼儿园某教室矩形地面的长为8m,宽为5m,现准备在地面正中间铺设一块面积为18m2 的地毯 ,四周未铺地毯的条形区域的宽度都相同,你能求出这个宽度吗(列出方程即可)?,解:如果设所求的宽为 x m ,那么地毯中央长方形图案的长为 m,宽为 m,根据题意,可得方程:,(8 - 2x),(5 - 2x),x,x,(8 2x),x,x,(5 2x),( 8 - 2x)( 5 - 2x)= 18.2x2 - 13x + 11 = 0(一般式) .,例2:观察下面等式:102 + 112 + 122 = 132 + 142 你还能找到其他的五个连续整数,使前三个数的平方和等于后两个数的平方和吗?,解:如果设五个连续整数中的第一个数为x,那么后面四个数依次可表示为: , , , .根据题意,可得方程:,x+1,x+2,x+3,x+4,x2 + (x + 1)2 + (x + 2)2 = (x + 3)2 + (x + 4)2.x2 - 8x - 200(一般式).,解:由勾股定理可知,滑动前梯子底端距墙m.如果设梯子底端滑动x m ,那么滑动后梯子底端距墙 m ,根据题意,可得方程:,例3:如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.如果梯子的顶端下滑1m,那么梯子的底端滑动多少米?,6,x+6,72 + (x + 6)2 = 102.x2 + 12 x - 15 = 0(一般式).,10m,8m,1m,xm,1.下列方程哪些是一元二

    注意事项

    本文((全册)北师大版九年级数学上教学PPT课件.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开