电力变压器试验课件.ppt
2022/12/1,1,变压器试验,变压器出厂试验1) 例行试验2) 型式试验3) 特殊试验,2022/12/1,2,例行试验 每一台变压器均承受的试验1)电压比测量及电压矢量关系校定 2)绕组电阻测量3)绝缘电阻,吸收比及极化指数 介质损耗功率因数测量4)空载电流及空载损耗测量 5)短路阻抗及负载损耗测量6)绝缘例行试验7)有载分接开关试验 8)变压器油试验,2022/12/1,3,型式试验 除出厂试验之外,为验证变压器是否与规定的技术条件符合所进行的具有代表性的试验。(如果一台变压器的额定及结构与该厂的其他变压器完全一致,则认为可以代表。)1)温升试验2)绝缘型式试验3) 油箱机械强度试验,2022/12/1,4,特殊试验 除出厂试验和型式试验之外,经制造厂与使用部门商定的试验,它使用于一台或几台特定合同上的变压器。1) 绝缘特殊试验2)绕组对地和绕组间电容的测量3)暂态电压传输特性测定4)三相变压器零序阻抗测量5)短路承受能力试验6)声级测定7)空载电流谐波的测量,2022/12/1,5,8)风扇和油泵电机所吸收功率的测量 9)长时间空载试验 10)油流静电测量 11)转动油泵时局部放电测量 国家电网公司要求新增项目: 1)低电压空载试验(380V电压下的空载电流和空载损耗测量) 2)低电压下的短路阻抗测量 3)绕组变形测量(频率响应法) 4)1.1倍额定电流发热试验 5)无线电干扰测量,2022/12/1,6,变压器变压比及连接组标号测量 变压比及连接组标号测量是变压器的例行试验项目,不仅在变压器出厂试验时要进行,而且在变压器安装现场厂投入运行前也要进行电压比和连接组标号测量。这两项测量项目是变压器并列运行的必要条件。 电压比测量的目的:保证绕组各个分接的电压比在标准或合同技术要求的电压比范围内。确定并联线圈或并联线段(例如分接线段)的匝数相同。判定绕组各个分接的引线和分接开关的连线是否正确。,2022/12/1,7,执行标准:GB1094.1-1996. JB/T501-2006,GB50150标准:额定分接上变比误差在0.5%范围内,其它分接误差应在变压器阻抗值电压值(%)的1/10以内,但不的超过1% 变压比及连接组标号测量应 分别在变压器出厂试验,工艺过程中半成品(插铁、器身试验)进行测量。尤其在半成品试验中更要认真测试和严格控制。 对于带有并联支路的绕组在插铁后试验还 要进行等匝试验,确保并联支路匝数相等。,2022/12/1,8,电压比和连接组标号测量方法 双电压表法:一般从高压侧输入适当幅值单相电压分别测量高低压电压,并计算变比K=U1/U2,与标准变比的偏差。使用仪表应采用0.1级高内阻的数字电压表。 连接组标号测量采用三相电源,在高压侧施加适当幅值三相电压(一般取380V)。高、低压任一相同名端相连接,分别测量高低压各个端子间的电压,作出矢量图判断出连机组标号。 变比电桥法:标准电压互感器式电压比电桥、电阻分压器式电压比电桥。变比电桥精度0.1级,同时电桥应具备连接组标号测量功能。 试验时应注意接线是否正确,接触是否良好。三绕组变压器测量高-中、高-低、中-低压间各个分接的变压比,双绕组变压器测量高-低压间各个分接的变压比。,2022/12/1,9,工艺过程中的试验铁心套装线圈后:调压圈或线圈的调压段必须按照图纸预连接,逐相测量。(单线测量)电压比应符合线圈的匝数比。对有并联绕组的变压器进行等匝试验。带有稳定绕组变压器稳定绕组对其它绕组变比三相必须平衡。引线焊接后的器身试验逐个分接测量变压比,同时进行连接组标号的测量。,2022/12/1,10,现场交接试验 试验使用的变比测试仪精度和灵敏度均不应低于0.2级。 电压比计算的比值应按铭牌电压计算。三绕组变压器至少在两对上分别测量,有分 接绕组应在每个分接上分别测量。 额定分接上变比误差在0.5%范围内,其它分接误差应在1%内,协议有要求者,应按协议要求。矢量关系(接线组别)应符合铭牌数据。 有载开关在变比测量时使用电动操作。,2022/12/1,11,变比试验中常见问题1 在工序过程中(插铁、器身试验)经常遇到在变比试验中会出现异常,如发生变比超差和无法测量等问题,应首先检查试验接线是否正确,试验仪器是否正常。对线圈出现短路环时应特别注意,不应使仪器长时间经受大电流冲击,防止仪器损坏。当变比误差超过标准时,在排除测量接线和仪器原因,根据线圈匝数和误差百分数,判断其线圈是多匝或少匝。必要时可以正串或反串临时匝来确定错匝数。有些时候虽然变比测量误差不超标,但三相平衡度相差较大时,也应查明原因找出引起误差的确切原因。判断误差较大相的线圈,错匝的多少和错匝的部位。,2022/12/1,12,变比试验中常见问题2 变比试验在出厂试验时,无载调压变压器经常发现的问题有开关的档位与开关指示的位置不一至,变比测量时误差将会很大。有时虽然开关指示在档位上,但开关内部触头未接通,会造成变比无法测量。变比测量时转动开关,测量的变比无变化,内部开关与外部操作杆未连接好,开关操作时指示虽转动但开关不转动。,2022/12/1,13,变压器绕组直流电阻测量 直流电阻测量的目的:1)绕组导线连接处的焊接和机械连接是否良好2)引线与套管、引线与分接开关的连接是否良好3)引线与引线的焊接和机械连接是否良好4)导线的规格、电阻率是否符合要求5)各相绕组的电阻是否平衡6)变压器绕组的温升是根据绕组在温升试验前的冷态电阻和温升试验后断开电源瞬间的热态电阻计算得到的。,2022/12/1,14,绕组直流电阻测量标准:GB6451-2008.容量小于1600kVA变压器 绕组三相不平衡率:相电阻为4%。线电阻为2%容量大于1600kVA变压器 绕组三相不平衡率:相电阻为2%。线电阻为1%。 直流电阻测量的方法 变压器直流电阻测量按JB/T501-91标准有两种测量方法,电桥法和伏、安法(变压器直流电阻测试仪) 试验仪器应使用精度为0.2级以上的直流电阻测试仪,根据变压器容量大小及电阻大小,选用适当的电流档测量所有绕组的直流电阻。,2022/12/1,15,有分接绕组应测量所有分接直流电阻。对有中性点引出的绕组应测量其相电阻,无中性点引出的测量线电阻。快速测量直流电阻的原理与方法变压器绕组具有很大的电感和很小的电阻,尤其是其容量越大,绕组的电感就越大,而电阻越小,因而其时间常数较大。测量绕组电阻时,当接通直流电源后,充电电流要经过一个暂态过程才能达到稳定值,快速准确测量直流电阻是很重要的问题。变压器绕组电阻测量的等效电路原理见图5-1,充电电流变化图见图5-2,其中Lx和Rx为充电电感与被测电阻. 电流方程为: , 式中 时间常数, =L/R,2022/12/1,16,图5-1 直流电阻测量接线原理图,电流增长时间曲线,2022/12/1,17,从时间常数 =L/R可知,为了减小时间常数,缩短充电时间t有两种方法,一是减少线圈的电感L,二是增加回路的电阻R。变压器绕组的电感量L决定于绕组的匝数N,铁心的几何尺寸和硅钢片的导磁系数即磁导率 。对于被试变压器来讲,只有磁导率 可以改变,即在铁心磁通密度趋于饱和时, 就大幅下降,从而线圈电感L也随之减小。变压器直流电阻测量为了缩短充电时间和准确的电阻值,充电电流一般选择为额定电流的2-10%。大容量变压器选择较小值小容量变压器选择较大值。 助磁法是采用高低压绕组串联,高压绕组助磁,快速测量低压绕组电阻的方法,该方法一般用于铁心为三相五柱式,低压绕组为d接大容量变压器的直流电阻测量中。,2022/12/1,18,高低压绕组磁法测量原理图,2022/12/1,19,测量时注意问题1)测量时应注意大容量变压器充电时间较长应有足够的充电时间;绕组直流电阻难度随着变压器的单台容量增大而增加,特别是铁心为五柱式,低压绕组为三角形连接的特大容量变压器,测量直流电阻时,电流达到稳定的时间很长。如果电流未达到稳定时读数,则测不出电流的真实数。2)接线夹接触是否良好;清除接线引起的误差;3)温度偏差影响,三相线圈温度偏差1时,在常温下线圈误差将会增大接近0.4%4)无励磁分接开关应使定位装置进入指定位置,有载分接开关应采用电动操作。5)试验时应记录好环境温度及变压器油温度。,2022/12/1,20,6)直流回路中有电流I时,变压器铁心磁场中有能量,,断开时会产生高电压,可能危及人身安全和损坏仪表,所以需要用放电回路使电流由I通过电阻上的损耗逐渐下降,待电流很小时再断开线路。,7)变压器在测量电阻时,不得切换无励磁分接开关来改变分接。无励磁分接开关改变分接时将在触头间发生电弧,引起油的分解,并形成可燃气体和碳,使变压器油质变坏,同时损坏电桥。,2022/12/1,21,试验中常见问题 在工序过程中(器身试验)经常遇到以下问题,(容量120MVA以上,低压为 10.5kV)低压直流电阻三相不平率超差。原因有:1.设计时低压引线电阻不平衡,引线占线圈直阻的比重很大,使线圈不平衡率超差。2.低压引线使用的铜排电阻率不合格,铜排电阻较大引起三相直流电阻偏差较大。3.温度偏差影响,三相线圈温度偏差1时,在常温下线圈误差将会增大接近0.4%,所以变压器刚焊接完后不要立即测量直流电阻。4.试验接线引起的误差,当测量线接触不好时,将出现较大的误差。特别是电压端子接触不好时误差将加大。,2022/12/1,22,出厂试验经常遇到的问题有:1.有载变压器的有载开关烘烤后产生氧化膜,使直流电阻不合格。有在开关反复操做500次左右一般能够好转,有时操作1000次左右才能好转,如果反复操作不能好转时,需放油进行处理,将开关触头进行人工处理。2.无载开关也会遇到开关触头氧化现象,处理方法同有载开关。另外无载开关也经常遇到开关装配不良,虽然开关外部指示位置正确时,开关内部触头接触不良,需重新装配调整重新试验。3.引线铜头与高压套管接线排(佛手)接触不良。低压软连接与套管接线板接触不良。,2022/12/1,23,绝缘电阻及吸收比、极化指数的测量绝缘电阻及吸收比、极化指数测量的目的在变压器制造过程中,用来确定绝缘的质量状态及发现生产中可能出现的局部和整体缺陷并作为产品是否可以继续进行绝缘强度试验的一个辅助判断手段。同时向用户提供产品出厂前的绝缘特性实测数据,用户由此可以对比运输、安装、运行中由于吸潮、老化及其他原因引起的绝缘劣化,使变压器的绝缘事故防患于未然,从而获得在维护上有价值的历史资料。,2022/12/1,24,绝缘电阻、吸收比及极化指数的测量是评价电器设备绝缘质量的方法之一。由于绝缘电阻测量只需兆欧表就可以进行。而且是一种非破坏性试验,在现场使用十分方便。所以电器设备的绝缘电阻测量在制造、安装、运行中的预防性试验中广泛使用。如果能定期进行测量并长期积累数据观察变化倾向,非常有助于对绝缘状况作出正确的分析和判断。,2022/12/1,25,执行标准:GB6451-2008. 35kV级4000kVA及以上和63kV级以上的所有变压器均测量其绝缘电阻及吸收比。330kV大容量变压器还应测量极化指数。国家标准GB50150-2006新标准规定,35kV等级以上,容量4000kVA以上,应测量吸收比。变压器吸收比应大于1.3,如果绝缘绝对值很高的吸收比小于1.3时,可改测极化指数。国家标准GB50150-2006新标准规定,35kV等级以上,容量4000kVA以上,应测量吸收比。当R60大于3000M,吸收比可不做考核要求。220kV等级以上,容量120MVA以上,应测量吸收比。极化指数应大于1.3,如果绝对值非常高,极化指数小于1.3时,并不是绝缘有缺陷,而是绝缘仍良好的一种表现。当R60大于10000M,极化指数可不做考核要求。,2022/12/1,26,测量方法及要求测量使用5000V、指示量程不低于100000M的兆欧表,精度1.0级。试验时被试品线端应短路,非被试侧应短路接地。兆欧表(L)火线接被试品,(E)地端接地,。测量前应对该绕组充分放电,以消除残余电荷对测量的影响。 (L)火线端使用良好的绝缘线,并悬吊好,使引线不影响的测量结果。每次测试完毕后,应首先断开火线,以避免停电后被测绕组向兆欧表放电而反向冲击仪表。测量时,绕组温度应在10-40之间,空气相对湿度应小于85%。试验时应记录好温度及湿度,并计算好吸收比和极化指数的比值,2022/12/1,27,4、5项目只对16000KVA以上变压器进行变压器铁芯及夹件绝缘测量使用2500V兆欧表,量程为10000M。,试验按照表1的测试绕组进行。当一个绕组测试完毕后,首先应将被测绕组放电,然后改接另一绕组测量。,2022/12/1,28,绝缘电阻值按1分钟电阻值来考核,线圈绝缘电阻20时不应小于2000M。铁心绝缘电阻不应小于200M,低于以上要求应查找原因,当绝缘电阻较低时一般与变压器器身烘烤干燥质量有关,与变压器油的优劣有关,当变压器绝缘电阻较低时,可进行滤油及热油循环处理,一般效果比较明显。如果滤油效果不明显时变压器器身需重新干燥。当夏季空气湿度很大时,变压器装配时间过长,变压器器身长时间暴露在潮湿的空气中,绝缘电阻将降低很多,变压器装配越快暴露时间越短越好,这样才能保证变压器绝缘不降低。,2022/12/1,29,绝缘电阻测量常见问题变压器吸收比测量经常达不到1.3的标准,这需要进行综合得分析,当绝缘电阻绝对值非常高时,吸收比往往达不到要求,但是这不表明绝缘有缺陷或受潮,而是绝缘状况良好的表现,可以用提高变压器温度的方法来进行判断。当温度上升时绝缘电阻值降低而吸收比却上升。当吸收比达不到要求时,可进行极化指数测量,极化指数达到1.5时表明绝缘良好,当绝缘电阻值很低而吸收比极化指数达不到要求时,表明变压器受潮严重应进行处理。,2022/12/1,30,夏季变压器绝缘电阻往往不是很高,这还与瓷瓶(套管)表面受潮有关,测量绝缘时在瓷瓶表面进行屏蔽,屏蔽环与摇表屏蔽端子连接,可消除表面受潮的影响。另外摇表测量线绝缘也应良好,带摇表线空摇摇表时表针指示应在位置,消除摇表线对绝缘电阻的影响。变压器经常发生铁心及夹件绝缘不高等问题,甚至绝缘到零。此类问题发生的原因多为铁心绝缘件受潮,变压器中有异物,固定绝缘件发生位移等。,2022/12/1,31,介质损耗因数测量介质损耗因数测量和绝缘电阻一样都属于绝缘特性试验。它和绝缘电阻一起很早以前就被普遍用作判断产品绝缘状态是否良好的重要手段。当外施电压为交流电压时,绝缘中的视在功率UI可分为两部分组成,有功部分P和无功部分Q,其比值称为介质损耗因数。即tan=P/Q,2022/12/1,32,测量方法 试验仪现在皆采用数字式交流电桥,测量精度误差小于1%。 正接线测量:只能测量两极对地绝缘的产品,例如变压器套管。 反接线测量:试品对地之间的绝缘介质损耗测量 变压器试验接线试验顺序同绝缘电阻测量,试验测量环境要求同绝缘测量。变压器试验接线时电桥接线采用反接线,套管试验采用正接线。 施加电压按下列规定:额定电压在6kV及以下的试品按额定电压;额定电压为10kV以上的试品按10kV加压。,2022/12/1,33,tan 功率因数电压特性:当绝缘介质工艺处理良好时,外施电压与tan之间的关系近似一水平直线。当绝缘介质工艺处理不好或绝缘介质中残留气泡时,则绝缘介质的tan比良好绝缘时要大。 tan曲线较早的向上弯曲。电压上升和下降时测得的tan值不相重合。当绝缘老化时,绝缘介质的tan反而比良好绝缘时要小,但tan增长的电压较低,即tan曲线在较低电压下即向上弯曲,另外,老化的绝缘比较容易吸潮,一旦吸潮, tan就会随电压上升迅速增大。,2022/12/1,34,tan 功率因数温度特性:tan随温度升高而增加,其与温度之间的关系与绝缘材料的种类、性能和产品绝缘结构等有关。在同样的绝缘材料、同样的绝缘结构情况下与绝缘介质的干燥工艺、吸潮和老化程度有关。在10-40范围时,干燥的产品tan增长较慢。温度高于40时tan增长加快。温度特性曲线向上弯曲。,2022/12/1,35,当对试品绝缘性能产生怀疑时,可在不同电压下测量其介质损耗因数。绝缘良好的试品应随着电压的升高介质损耗不变或是略有升高。在10-40时,介质损耗因数的测量结果不超过下列规定:35kV级及以下绕组20时不大于1.5%63kV级及以上的绕组20时不大于0.8%330kV级及以上的绕组20时不大于0.5% 协议有要求者,按协议要求值。,2022/12/1,36,当绕组温度与20不同时,换算方法按GB6451-2008标准的方法进行。当温度在20 以上时,tan= tanT/A当温度在20 以下时,tan= AtanT。 A-温度换算系数。试验时,试验电源频率应为额定频率,其偏差不应大于5%。电压波形应为正弦波形。仪器接地应良好,最好与被试品一起接地。加压线应绝缘良好,并悬起支撑好,使引线不影响测量结果。,2022/12/1,37,影响介质损耗功率因数测量的因素:环境因素:温度和湿度的影响。试验接线造成的影响:高压线绝缘不良。高压线和地线接触不良。套管为垂直立起试验,或立起时间不够。套管表面受潮。(往往出现介损为负值),2022/12/1,38,外施交流耐压试验外施交流耐压目的为了保证变压器符合安全可靠运行的要求,除变压器的绝缘性能,电气性能符合国家标准。还必须使变压器的绝缘强度符合要求。外施交流耐压的目的是考核绕组对地和绕组之间的主绝缘强度。这一目的对全绝缘变压器来说完全能达到,对分级绝缘变压器则只能考核中性点对地(端绝缘对铁轭)绝缘水平。,2022/12/1,39,根据GB1094.3-2003标准试验电压如下全绝缘变压器(35kV电压等级以下变压器)短时额定耐受电压,* 有些变压器协议中要求,考虑变压器传递过电压将变压器绝缘水平提高一个电压等级.高海拔地区变压器试验电压按协议执行。协议中对短时额定耐受电压有规定要求的按协议执行。,2022/12/1,40,分级绝缘变压器中性点端子短时额定耐受电压,2022/12/1,41,外施交流耐压试验方法外施耐压时,被试产品铁芯及外壳必须可靠的接地。试品的油面指示必须高于穿缆式套管或是套管升高座。试验前,应对所有与主体油连通的套管放气,对低压接线板,手孔盖板,升高座等所有凸起部分均需放气,直到流油为止。应将试品的被试绕组所有端子连接接火线。非被试绕组所有端子短路接地。试验电压初始值应低于三分之一试验电压,并于测量相配合尽快的加到试验电压值。维持电压恒定,持续60s,然后将电压迅速降到三分之一试验电压,最后切断电源。,2022/12/1,42,试验电压的测量,应使用电容分压器配合峰值表测量。应按峰值除以 为准施加电压。在耐压机高压侧测量。使用发电机作为试验电源时,为了减少电流的容升或是消除发电机自励磁现象,可在试验回路连接适当的电抗器,以补偿电容电流,消除或减少上述现象。,2022/12/1,43,判断外施交流耐压合格标准,试验过程中如果电压不突然下降,电流指示不摆动,没有放电声,则认为试验合格;如果有轻微放电声,在重复试验中消失,也视为试验合格,如果有较大放电声,在重复试验中消失,需吊心检查寻找放电部位,采取必要措施,根据放电部位决定是否复试。 变压器耐压试验在重复试验时同过往往也会在变压器油中产生乙炔。应测量准乙炔数据,作为后续试验的判断的依据。,2022/12/1,44,在变压器出厂试验时外施交流耐压经常会遇到一些问题,外施耐压一般有以下几种故障:1变压器内油中有气泡放电,可听到清脆的放电声,有时象炒豆子一样,有时整个试验过程中只响一声。试验过程中电压电流无明显变化。2金属悬浮物放电,当试验电压升到一定电压值时,会听到放电声,如果电压保持不变放电声每隔一段时间出现一次,此时电压与电流无明显变化,当电压继续升高会听到放电声频率加快出现连续的放电声。当放电时间过长时也会引起击穿。3外施交流耐压时对外壳和夹件击穿放电,一般放电声音很大,会听到“当、当”的放电声音。施加的电压会出现下降电流会出现上升,电流表指针会摆到最大值以上,有时还会引起地线打火。此类故障多为引线到外壳的绝缘距离不够标准的要求。,2022/12/1,45,4通过绝缘件击穿 ,有时放电声音不很大,会听到“嘶”的一声,这时试验电压会下降试验电流会上升。此种现象一般是沿绝缘表面击穿击穿点不通过油隙。当通过一定的油隙击穿时会听到较大声音,声音比较发闷,不象对外壳击穿的声音那样清脆和响亮。沿绝缘表面击穿(爬电),再次试验时击穿电压会下降很多,当击穿电压下降较低时,可进行直流泄漏试验这时泄漏电流会增大很多。如果绝缘完全击穿时可用摇表测量绝缘电阻,绝缘电阻也会下降很多,根据以上现象变压器在查找故障时可分相进行直流泄漏和绝缘电阻测量。来确定故障相找到故障点,可以减少故障查找时间,同时减少返工作量。如果击穿是通过一定的油隙时,直流泄漏和绝缘电阻变化不明显。,2022/12/1,46,感应耐压试验(ACSD)感应耐压试验是以考核试品绕组的匝间、层间、段间及绕组线端对地和相间的绝缘强度。该试验应在外施耐压试验后进行。试验方法:一般采用三相感应法、被试相加电法(非被试相支撑法)、非被试相励磁法(非被试相加电)。感应耐压试验通常施加两倍的额定电压,为了减少激磁容量,试验电压的频率应不小于100HZ,最好频率为150-400HZ,持续时间t按下式计算:t=120fn/ft试验时间.sfn额定频率HZf试验频率HZ持续时间不少于15s,2022/12/1,47,对于全绝缘变压器的感应耐压试验,一般采用三相对称的交流电在试品低压绕组(或其他绕组)的线端施加两倍的额定电其他绕组开路。绕组星形联结的中性点端子接地性点引出或非星形联结的绕组,也应择合适的线端接地,以避免电位悬浮。对于110kV级及以下的全绝缘变压器,各绕组相间试验电压不应超过其额定短时工频耐受电压。,2022/12/1,48,三相全绝缘变压器感应耐压试验时,通常采用施加三相电压试验的方法。图如下:,2022/12/1,49,分级绝缘的变压器,感应耐压试验中不能同时满足线端和中性点两个绝缘水平的试验电压时,中性点绝缘水平允许用外施耐压来考验。具有两个分级绝缘的变压器,感应耐压试验时,为达到一个绕组线端对地的试验电压,另一个绕组超过该绕组的试验电压或者相间超过试验电压,应在试验接线时,采用合适的方法使各部都达到试验电压。试验应满足下列几个要求:(l) 被试端的试验电压对地及相问均应符合标准要求,不同频率对不同持续时间;(2) 感应试验电压倍数一般要达到2倍额定电压;(3) 被试绕组线端与该相相邻绕组最近点之间的电压最好达到试验电压,如果达不到时允许降低,但降低值不得超过8%;(4) 被试线端对地与匝间和相间的感应试验最好一次完。,2022/12/1,50,被试相加电法(非被试相支撑法) 对于110kV和220kV级三相分级绝缘变压在进行感应耐压试验时,绝大多数采用该方法,但采用这种方法必须要求中性点的耐压水平至少为高压线端试验电压的1/3以上,否则不能采用。试验方法为:低压被试相施加电压,高压非被试相短路接地,中性点和高压被试相悬空。,2022/12/1,51,三相变压器感应耐压试验时,通常采用施加单相电压逐相试验的方法。图如下:,2022/12/1,52,非被试相励磁法(非被试相加电)当中间变压器输出电压达不到2倍的低压额定电压时,可以在低压非被试相施加1倍的额定电压来试验,同样可以达到试验考核的目的。试验方法:使高压非被试两相并联接地,强迫该两项磁通大小和方向相等,合成流向试验相,使其磁通变为两倍,故试验相感应2倍的试验电压。,2022/12/1,53,试验原理如图,2022/12/1,54,采用低压侧供给励磁的非被试相励磁法进行分级缘变压器的感应耐压试验,励磁电压仅为被试相励磁法的一半。因此,当缺少必要的试验设备(中间变压器、电流互感器、电压互感器等或试验线路绝缘不允许或支撑变压器的电压比不能满足要求而又符非被试相励磁法的适用条件时,可以考虑采用低压侧非被试相励磁,此时励磁电压降低一半,励磁电流增加一倍,励磁容量不变。,2022/12/1,55,判断感应耐压的标准:感应耐压时,在试验电压的持续时间内,如果电源监测的电压和电流不发生变化,没有放电声,并且在感应耐压前后空载试验数据无明显差异时,则试品承受了感应耐压的考核,试验合格。如果有轻微放电声,在复试中消逝也视为试验合格。如果有较大的放电声在复试中消失,仍需吊心检查,寻找放电部位采取必要措施,根据放电部位决定是复试。感应试验结束若干小时候后,取变压器油做色谱分析,若发现含有C2H2。则可以肯定试品已经发生放电或击穿,应吊罩检查采取必要的措施。,2022/12/1,56,感应耐压常见问题:主要有高电压部位对周围距离不够,对夹件对外壳击穿放电。线圈匝间绝缘有缺陷,造成匝间、饼间击穿。对外壳对夹件击穿放电时声音较响。电流增大电压下降,从我厂此类问题统计来看, 高压线圈出头及引线对周围距离不够造成的故障比较多,线圈匝间故障相对较少,匝间故障时放电声较为沉闷,同时低压励磁电压会出现震荡升高。匝间故障后造成匝间短路,在复试空载试验时空载电流将会急剧升高空载损耗将增大。如果变压器静放时间短有气泡或变压器油中有悬浮物等,会出现感应耐压时放电,但在复试时又通过。,2022/12/1,57,变压器空载损耗和空载电流测量 是变压器例行试验。 空载试验的目的和意义 空载损耗主要有电工硅钢片的磁滞损耗和涡流损耗组成,空载也包括有附加损耗,正常变压器附加损耗都可以忽略不计。 变压器的全部励磁特性是有空载试验确定的,进行空载试验的目的测量产品的空载损耗和空载电流,看其是否符合产品有关标准和技术条件要求;通过测最产品的空载损耗和空载电流发现铁心磁路中的局部或整体缺陷;根据高压绝缘试验前后测量的空载损耗比较,判断绕组是否有匝间短路情况。,2022/12/1,58,试验方法和要求 变压器空载试验一般从电压较低的绕组(例如低压绕组)施加波形是正弦波,额定频率的额定电压,其他绕组开路。 如果施加电压的绕组是带有分接的则应使分接开关处于主分接的位置,如果试品中有开口三角联接绕组,应使其闭合,运行中处于地电位的接线和油箱外壳应可靠接地。 为了保证施加电压是正弦波,试验电源最好采用同步发电机组。 试验接线要采用三瓦特表法,特别注意电压互感器、电流互感器的极性,三相功率应是三瓦特表的代数和。空载试验所用电压、电流互感器的精度最好不低于0.1级,所用仪表的精度不低于0.5级,测量功率应采用功率因数cos小于0.1的瓦特表。,2022/12/1,59,试验接线图:,2022/12/1,60,铁心临时匝试验时,一般采用临时绕制匝数,要使试验电压接近发电机额定输出电压。其临时匝高度接近于线圈的真实高度。 当试验电压三相不平衡对称度小于2%时,可以三个线电压的平均值或a-c间的线电压为准施加电压,测量空载数据。如果三相电压的不对称度大于2%,但小于5%时可分别以a-b,b-c,c-a为准施加电压。试验数据取三次试验的算术平均值.,2022/12/1,61,当电压波形畸变时,既平均值与有效值电压表读数不同时,应以平均值电压表(有效值刻度)施加电压U,测量空载损耗Pm,空载电流I和有效值电压U。如果U,=U 则空载损耗P0=Pm ;如果U,U 则空载损耗P0按以下公式校正 ; P0=Pm1+(U,-U)/U,平均值与有效值偏差不得大于3%,2022/12/1,62,三相变压器空载试验采用单相试验方法。通过试验判断出故障的位置。单相试验方法如下:,2022/12/1,63,相对同类型变压器损耗很大时,怀疑磁路有问题时也应进行变压器单相空载试验。对于变压器铁心结构为三柱式单相空载试验的电流和损耗可换算到三相试验结果。变压器铁心结构为五柱式单相试验结果不能换算到三相试验结果,只能和同型号同容量同结构的试验结果进行比较。 变压器低电压空载测量同样采用单相测量的方法。,2022/12/1,64,三柱式单相空载试验的电流和损耗换算到三相试验结果公式:低压为三角形接线时。三相的空载电流百分数计算如下: Io=0.289(Ioab+ Ioac+Iobc)/In100% 低压为星形接线时。三相的空载电流百分数计算如下: Io=0.33(Ioab+ Ioac+ Iobc)/In100%,2022/12/1,65,三相的空载损耗均按下式计算:Po=( Poab+ Poac+ Pobc)/2单相空载试验三次试验结果应符合下列规律:Poab= Pobc(偏差一般小于3%)Poac= KPoab Poac= KPobc K 有铁心几何尺寸决定。一般K=1.31.4 三次测量的空载数据如果不符合以上两个规律中的任何一个时,则说明变压器磁路中有局部缺陷,也可以发现在变压器内那一相绕组有问题。,2022/12/1,66,空载损耗、空载电流增大的原因分析1、空载损耗增大的原因分析: 铁心硅钢片之间绝缘不良,或某一部分硅钢片之间短路。 穿心螺杆或压板的绝缘损坏造成铁心的局部短路。 绕组匝间(括正常线匝和换位处等)绝缘损伤造成的匝间短路。 绕组并联导线之间短路或并联匝数不相同。 铁心结构的不同、硅钢片的厚度不均和磁通密度高低及铁心的材料,夹件结构,夹持力都直接影响空载损耗。 2、空载电流增大的原因分析 空载损耗增大所列的原因。 铁心接缝过大。,2022/12/1,67,变压器负载损耗、短路阻抗试验 负载损耗和短路阻抗测量的目的和意义 短路阻抗和负载损耗是变压器运行的重要参数,变压器短路阻抗和负载损耗是变压器的例行试验。进行试验的目的是确定这两个重要性能参数是否满足标准技术协议的要求,以及变压器绕组内是否存在缺陷。 短路阻抗决定一台变压器在系统短路时短路电流大小,和短路时变压器内部电动力的大小。短路阻抗还决定变压器载负载时的电压变化,及对电网运行时电压波动的影响。短路阻抗也决定变压器并列运行的必要条件之一。,2022/12/1,68,负载损耗有几部分组成:绕组中的直流电阻损耗I2R这是负载损耗中的主要部分此外还有因绕组电流产生的漏磁场引起的附加损耗,其中包括:1)漏磁场在绕组导线内的涡流损耗。2)漏磁场在绕组并联导线内的不平衡电流损耗。3)漏磁场在铁心内引起的涡流损耗,及漏磁场使铁心内部磁通分布不均引起的损耗增加。4)漏磁场在油箱、油箱屏蔽内的损耗。5)漏磁场在夹件、拉板等结构件内的损耗。,2022/12/1,69,试验方法及要求在变压器一侧绕组中通过额定频率正弦波的额定电流,(施加电流不小于50%额定电流)另一侧绕组短路此时的损耗就是负载损耗。变压器短路阻抗与负载损耗测量同时完成,短路阻抗一般用相对于某一参考阻抗的百分数表示。在分接范围超过5%时,短路阻抗应在主分结合两个极限分接测量。,2022/12/1,70,三绕组变压器应在三对不同绕族之间测量负载损耗和短路阻抗,非被试绕组开路。在三绕组变压器中若各绕组的容量不相等时,施加电流应以容量较小的绕组为基准,并在试验结果中注明负载损耗的基准容量,而短路阻抗则以容量较大的绕组为基准,并以%值表示。负载和阻抗试验的测量线路同空载试验,只是负载和阻抗试验是不使用平均值电压表,全部使用方均根值仪表,由于负载试验时容量大和功率因数cos很低,是负载试验需要特别注意的问题。三相变压器的负载试验要测量三相的电压和电流并以三相平均值为准。负载和阻抗试验,使用精度为0.01级的电压互感器和电流互感器。电流表和电压表精度为0.5级,瓦特表精度为0.5级。功率因数cos=0.1,使用三瓦特表法。对大容量变压器测量,应使用高精度低功率因数数字式功率分析仪。,2022/12/1,71,三表法试验接线图:,2022/12/1,72,在50%一100%额定电流范围内进行试验。当施加的电流由额定电流 降低到 时,测得的短路电为 ,负载损耗为 ,则校正到额定电流下的负载损耗和短路电压为:负载损耗:短路电压:,非额定条件下负载损耗量,2022/12/1,73,负载损耗校正公式:负载损耗校正到参考温度t时的负载损耗为:校正到75 负载损耗:短路阻抗计算负载试验时,当从电压较高的一侧施加电压,当施加的电流达到绕组的额定电流时所施加的电压为阻抗电压 ,绕组的额定电压为 ,则这对绕组的短路阻抗: % %。,2022/12/1,74,要减少负载损耗测量误差,应注意: 电源容量要能使被试变压器中通过额定电流,也可以不小于50额定电流。应注意的是:一般是假设负载损耗与电流平方成正比,但是,当采用非线性材料时,例如磁屏蔽等,结构损耗占比例较大时,负载损耗不与电流平方成正比,此时应使施加电流达到变压器的额定电流。 施加于变压器的电压应是阻抗电压,电压波形要近似于正弦波。一般用市电作电源时较难达到这一要求,最好用正弦波电压波形发电机作电源。对选用的电流互感器应使互感器额定电流接近变压器的额定电流,且测量级准确度应达0.1级以上,对选用的电压互感器应使互感器额定电压接近变压器的阻抗电压,其测量级准确度也应达到0.1级以上,使电压互感器保持较小的比值差与相位差。,2022/12/1,75,试验读数的速度,与变压器温度的测定 如测量速度慢,负载损耗产生的温度会使读数不准。电阻损耗应是额定电流平方与绕组平均温度下实测电阻的乘积。短路用联结线的电流密度要低,联结要牢靠,尤其在低压侧短路的联结线。如电流密度较高,联结又不牢,有较大接触电阻,会有附加损耗产生,也是测量损耗的误差。,2022/12/1,76,雷电冲击试验雷电冲击的目的和意义 电力系统中的高压电器设备除承受长期工作电压作用及谐振过电压和操作过电压外,还受到大气过电压,电力变压器是电力系统中的重要设备,为了保证电力系统能够安全运行。要求变压器有足够冲击绝缘强度,对不同电压等级的变压器,按照国家标准进行雷电冲击试验。 在雷电冲击电压作用下,绕组的电感能量和电容能量发生交换而形成震荡过程。这个过程使绕组的匝间和饼间和绕组各饼对地的电位已不再是按匝数分布。其匝间饼间电位差和绕组各饼的对地电位和工频电压作用下比较要超过许多倍。所以变压器的纵绝缘主要是根据冲击时的作用电压而定。,2022/12/1,77,试验标准和内容 变压器雷电冲击试验GB1094.3-2003标准要求。T1(波前时间)为1.2s30%, T2(半峰值时间)为50s20%。截波截断时间应在2s6s之间。反极性峰值不大于截波冲击峰值的30%。 试验程序: 一次降低电压(50%电压)的负极性全波冲击; 一次100%电压的负极性全波冲击; 一次降低电压(50%电压)的负极性截波冲击; 二次100%电压的负极性截波冲击; 二次100%电压的负极性全波冲击;,2022/12/1,78,变压器绕组额定耐受电压表准见下表;,2022/12/1,79,试验设备选择及接线 雷电冲击发生器一般多采用多级冲击电压发生器,多级冲击电压发生器的作用原理可以简单概括为多级电容并联充电,然后自动串联起来放电,形成幅值很高的冲击电压波。人们习惯用冲击能量(W)来表示冲击发生器的负载能力。对多级冲击发生器单级充电电压为U时,该冲击发生器的标称能量为:W=NCU2/2,N为冲击发生器级数,C为每级电容量单位取F,U为每级电压单位取V,则W的单位为J。一般考虑到冲击发生器的效率、试验能力和设备的经济性,通常应选则冲击电压发生器的主电容与试品电容的比值满足5C1/C210的关系。,2022/12/1,80,雷电冲击的测量系统一般采用阻容式分压器,分压器精度小于1%,随着计算机技术的发展测量仪器普遍采用数字式记忆示波器其测量误差不大于1%,冲击电压测量系统的全波幅值的总不确定度在3%范围内。冲击试验还应注意的一点:一旦产品发生击穿,尤其截波试验,冲击电流流过接地电阻时会有较大压降,压降太大会使仪表击穿,因此,必须注意接地电阻值不能高,一般规定在0.5欧以下。必要时,产品接地可与仪表接地分开。,2022/12/1,81,变压器容量较大时因电容量大而波形不能满足时应将冲击电压发生器几个级并联运行。 对变压器中点进行冲击试验时因属三相入波,电容量大,但试验电压一般不高,应将冲击电压发生器几个级并联后加压