欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPTX文档下载  

    自动控制原理全套ppt课件.pptx

    • 资源ID:1477217       资源大小:35.14MB        全文页数:1117页
    • 资源格式: PPTX        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    自动控制原理全套ppt课件.pptx

    自动控制原理,Automatic Control Theory,第 1 章 自动控制系统的一般概念,1.1 引言,1.2 自动控制系统,1.3 自动控制系统的基本结构,1.4 控制系统的基本要求,1.5 自动控制系统的分类,第1章 自动控制系统的一般概念,1.6 自动控制理论发展史,1.1 引言,现如今,自动控制在工业及农业生产、交通运输、航天航空、国防科技等诸多领域发挥着极为重要的作用。学习自动控制对于工科院校的学生而言,能够增强技术基础,培养辩证 思维能力和联系实际能力,提高综合分析问题的能力。,本章主要介绍了自动控制和自动控制系统的基本概念,使读者对自动控制系统的组成结构、基本原理、主要性能指标、类别以及控制理论的发展有个初步了解,为以后章节的学习打下基础。,1.2 自动控制系统,“控制”是一个较为常见的词汇,可以将其理解为,一个对象为了某个特定的目的,在另一个对象上施加的作用,这些特定目的可能是将电压、电流、水位、温度、位移、转速等物理量尽可能维持在某一范围,进而使得生产过程、生产设备或是生产工具能够以正常的工作条件运行,而这些生产过程、生产设备便是施加作用的对象,这些作用可以是属于物理、化学、生物学等方面的作用。,1.2.1 人工控制与自动控制,首先要理解什么是控制,什么是系统,以及控制的相关概念,进而才能正确理解自动控制。在自动控制理论中,控制的定义是:为了某个特定目的,在被控对象上施加作用,使得被控量按照预期的目的变化。被控对象:直需要对其特定量进行控制的设备或过程。被控量:该设备或过程的输出。在整个控制过程中,对某一对象进行单独分析时,一般将外部对该对象的作用称为输入,该对象产生的量称为输出。 当多个对象按照某一方式连接成一个有机整体的时候,这个整体叫作系统。,1.2.1 人工控制与自动控制,图1-1 人工控制的电热水壶,图1-2 自动控制的电热水壶,在控制被控对象抵消外界干扰的过程中,若控制本身与人工操作有关,便称为人工控制,而若是没有人类的直接操作, 即纯粹依靠自动装置来完成控制过程中的调节,则称该控 制为自动控制。,1.2.2 自动控制系统的表示方法,为了能够清晰地看出实际系统中内部信息的相互作用及信息流向,控制系统可以用框图来表示。图中的方框表示系统中具有相应职能的元部件,进入方框的信号为输入,离开方框的为输出。各信号的箭头方向表示信号的流向,圆圈里带交叉线的符号表示比较点。箭头指向比较点的那几个信号进行相加或者相减运算,箭头离开比较点的信号就是运算的结果。用交叉线表示引出点,引出点表示信号的引出。,图1-3 框图的基本组成单元,1.2.2 自动控制系统的表示方法,框图不同于抽象的数学表达式,其优点是可以清晰地看出各元部件之间信号的传递关系,表示了系统各变量之间的因果关系以及对各变量进行的运算,便于定性和定量分析控制系统,但是不包含系统物理结构的任何信息,因此是控制理论中描述复杂系统的一种简便方法。,1.3 自动控制系统的基本结构,把从被控对象输出端获得信息,通过中间环节再送回控制器的输入端的过程称为反馈,所述的中间环节称为反馈环节,对被控量的检测值称为反馈信号,给定输入与反馈信号的差值称为偏差。若反馈信号的符号为“ ”,则为正反馈,反之若为“”,则为负反馈。,按照有无反馈分为两大类:开环控制系统和闭环控制系统。,1.3.1 开环控制系统,图1-4 直流电机开环转速控制系统及其方框图,1.3.1 开环控制系统,开环控制系统指的是控制装置与被控对象之间只有顺向作用而没有反向联系的控制系统,其特点是系统的输出量不会对系统的控制作用产生影响,即系统不含有反馈控制环节。开环控制系统的精度取决于物理部件的精度和校准的精度。开环系统没有抑制外部干扰 及内部干扰的能力,所有控制精度较低。但是,由于系统的结构简单,造价便宜,所以在系统结构参数稳定、没有干扰作用或者干扰较小的场合下,依然会大量使用。,1.3.2 闭环控制系统,图1-5 直流电机闭环转速控制系统,1.3 闭环控制系统,图1-6 直流电机闭环转速控制系统方框图,1.3 闭环控制系统,控制器与被控对象之间不仅存在正向控制作用,而且还存在被控对象到控制器的反向联系。把这种控制过程称为闭环控制按闭环控制方式组成的系统称为闭环控制系统。 由于闭环控制系统是根据偏差进行控制的,只要被控量偏离给定值,系统就会自动纠偏,所以说闭环控制系统具有很强的纠偏功能,对于干扰具有良好的适应性。,1.3.3 自动控制系统的基本组成,图1-7 典型的自动控制系统的基本组成,1.4 控制系统的基本要求,控制系统能够正常工作的最基本条件便是稳定。 稳定性通常指系统在受到干扰后能够恢复到平衡状态的能力。如果系统能够恢复到平衡状态,则称该系统是稳定的,否则称该系统不稳定。系统从受到干扰到恢复稳定状态,其被控量呈衰减震荡或非周期过程。,图1-8 控制系统的扰动,1.4 控制系统的基本要求,稳定系统受到干扰作用或给定输入发生变化时,被控量都要发生变化而偏离期望值。由于控制系统中一般都存在储能元件或惯性元件,被控量不能马上跟随输入信号的变化并达到期望值,控制系统总要经历一个反复调整的过程,才能到达一个新的平衡状态,使被控量跟随给定输入的变化并达到期望值。这个调整过程称为动态过程(过渡过程),而把被控量达到的新的平衡状态称为稳态。,图1-9 典型系统的阶跃响应曲线,1.4 控制系统的基本要求,当一个稳定系统结束其动态过程并进入到稳态时,在理想状态下,一般都想让稳态值达到预期值。但实际过程中, 被控量的稳态值和预期值总是存在一定的误差,这是由于其中存在输入信号形式、系统结构以及间隙、摩擦等诸多非线性因素,因此在这些因素的影响下,该误差是难以消除的, 在控制设计中应使得该误差尽可能小,使得系统能够有更高的控制精度。故对于控制系统而言,该误差也是一个重要的基本要求,一般称该误差为稳定误差。,图1-10 I型系统的斜坡响应曲线,1.5 控制系统的分类,连续控制系统:控制系统中,各元件的输入输出信号都是时间的连续函数时,则称此类系统为连续控制系统,简称连续系统。连续系统的运动状态或特性用微分方程来描述。一般应用线性模拟调节器或校正装置的控制系统都是连续系统。,按信号传递形式可以将控制系统分为连续控制系统和离散控制系统。,离散控制系统:系统某处或多处的信号是以脉冲序列、或数码的形式传递时,则称此类系统为离散控制系统,简称离散系统。离散系统的运动状态或特性一般用差分方程来描述。,1.5 控制系统的分类,线性控制系统:若组成系统的所有元件都是线性的,则称此类系统为线性控制系统。线性系统的运动方程可用线性微分方程或线性差分方程来描述。如果线性微分方程或线性差分方程中的各项系数不随时间变化,则称这类系统为线性定常系统反之,则称为线性时变系统。,按是否满足叠加原理可以将控制系统分为线性控制系统和非线性控制系统。,非线性控制系统:系统包含一个或一个以上具有非线性特性的元件或环节时,则称此类系统为非线控制系统。非线性系统不具备齐次性,也不满足叠加原理,其运动方程要用非线性微分方程来描述。,1.5 控制系统的分类,定值控制系统:值控制系统又称为恒值控制系统、自动调节系统。该系统的给定值是一个恒定的数值,并且要求系统在各种扰动下,其输出都要保持在恒定的、希望的数值上。,按给定值形式可以将控制系统分为定值控制系统、程序控制系统和随动控制系统。,程序控制系统:程序控制系统的给定值是根据预先给定的时间函数进行变化的,并且要求被控量按相应的规律随控制信号进行变化。,随动控制系统:与程序控制系统不同,随动控制系统的给定值是未知的且随时间任意变化的函数。这类系统的特点是给定值的变化完全取决于事先不能确定的时间函数,并且要求被控量以一定的精度和速度跟踪输入量。,1.6 自动控制理论发展简史,从1788年到1868年的几十年中,人们对自动控制装置的设计还处于“经验主义”阶段,没有强大的理论基础作为支撑,所以在这一时期设计的自动控制系统经常出现振荡、性能指标不达标等现象,而又没有相应的理论知识来分析解决这些问题。直到19世纪后半叶,科学家们开始了对控制系统理论的探索。,第二阶段:经典控制理论,1868年:麦克斯韦对瓦特的调速器建立了线性微分方程;,1877年:劳斯提出了劳斯判据;,1895年:霍尔维茨提出霍尔维茨判据;,1932年:奈奎斯特提出了频域稳定性判据;,1954年:我国著名科学家钱学森结合控制理论在工程中的实践,出版了工程控制论。,1.6 自动控制理论发展简史,现代控制理论是一种以状态空间为基础的控制方法,本质上是一种时域分析法。它克服了经典控制理论的局限性,将研究对象扩展到非线性控制系统、多输入多输出系统,是人类在自动控制理论上的又一次飞跃。这一时期的主要代表人物有贝尔曼、卡尔曼、庞特里亚金、罗森布洛克等。1956年,美国数学家贝尔曼提出了最优控制的动态规划法;3年后,美国数学家卡尔曼又提出了著名的卡尔曼滤波器,以及系统的能控性和能观性;1956年,前苏联科学家庞特里亚金提出了极大值原理。1960年初,以最优控制和卡尔曼滤波为核心的现代控制理论应运而生。,第三阶段:现代控制理论,1.6 自动控制理论发展简史,伴随着社会需求的改变、各种科学技术的进步,生产系统的规模越来越庞大,结构越来越复杂,经典控制理论和现代控制理论已经难以满足时代的需求。在这样的背景下,控制理论的发展进入了第四阶段:大系统理论与智能控制阶段。其中,“大系统理论”是控制理论在广度上的开拓,是用控制和信息的观点,研究规模庞大、结构复杂、目标多样、功能综合的工程和非工程大系统的自动化和有效控制的理论。而智能控制是控制理论在深度上的延伸,依托于计算机科学、人工智能、运筹学等学科,主要用来解决传统方法难以解决的复杂系统的控制问题,是控制理论发展的高级阶段。,第四阶段:大系统理论与智能控制阶段,第 2 章控制系统的数学模型,自动控制原理,Automatic Control Theory,第2章 控制系统的数学模型,2.1 引言,2.2 系统微分方程的建立,2.3 线性系统的传递函数,2.4 控制系统的动态结构图与信号流图,2.5 闭环控制系统的传递函数,2.6 MATLAB中数学模型的表示,2.1 引言,建立控制系统的数学模型是分析和设计控制系统的首要工作。 静态数学模型:在静态条件下,描述变量之间关系的数学表达式称为静态数学模型,例如代数方程、静态关系表等。 动态数学模型:描述各变量动态关系的数学表达式称为动态数学模型,例如微分方程、差分方程、传递函数、频率特性、状态方程、动态结构图等。 建立控制系统数学模型的方法有机理分析建模法和实验建模法两种。 建立合理的数学模型对系统的分析研究至关重要,实际的控制系统,都具有不同程度的非线性、时变特性。,一. 线性系统的微分方程 二.非线性微分方程的线性化,2.2 系统微分方程的建立,一. 线性系统的微分方程,29,应用机理分析建模法建立控制系统的微分方程模型的一般步骤如下:,1)分析系统的工作原理,将系统划分成若干个环节,确定系统和各环节输入、输出变量。 2)从系统的输入端入手,按照信号传递顺序,根据各环节输入、输出变量间所遵循的物理定律,在不影响系统分析准确性的条件下适当简化,依次列写各环节的动态方程,一般是微分方程(组)。 3)从以上各环节方程的联立方程组中,消去中间变量。 4)将输出量及其各阶导数写在等式左端,输入量及其各阶导数写在等式右端,按降阶排列,并将各项系数化为具有一定物理意义的形式,成为标准化的系统微分方程。,一.线性系统的微分方程,30,【例2-1】RC 无源网络如图2-1所示,其中R 为电阻,C 为电容,试建立以为输入,为输出的RC网络微分方程。,解 设中间变量为回路电流,根据基尔霍夫定律可得如下方程组,消去中间变量i(t)有:,如果令RCT,则上式)又可表示为,一.线性系统的微分方程,31,【例2-2】弹簧-质量-阻尼系统如图2-2所示,其中F(t)为外作用力,m为物体M的质量,k为弹簧的弹性系数,f是阻尼器的阻尼系数,y(t)为物体的位移,试建立以外作用力F(t)为输入,物体M的位移y(t)为输出的微分方程关系式。,解 由系统结构及牛顿第二定律有,消去中间变量有,如果令,则可将微分方程式标准化为,一.线性系统的微分方程,33,【例2-3】机械转动系统如图2-3所示,试求输入转矩Mf(t)和输出转角q(t)、输入转矩Mf(t)和输出转速w(t)的微分方程。,解 牛顿第二定律有,其中 是角加速度。,一.线性系统的微分方程,34,【例2-4】电枢控制它励直流电动机如图2-4所示,试求以电枢电压为输入,电动机转速为输出的微分方程关系式。,解 根据电动机的工作原理,由输入端入手,可依次列写微分方程组。,消去中间变量有,由于工程实际应用中电动机的电枢电路电感La较小,通常可忽略不计,所以上式可降阶简化为一阶微分方程,令 , , ,则直流电动机的微分方程可以进一步简化为,二.非线性微分方程的线性化,36,严格地说,几乎所有的实际物理系统都是非线性的。描述非线性系统的非线性微分方程没有一种完整、成熟、统一的解法,不能应用叠加原理。,对非线性进行处理最简便的方法就是直接忽略。当物理元器件的非线性特性对系统影响很小,就可以忽略其非线性影响,将这些物理器件看成是线性元件。对非线性处理更好的方法是采用小偏差法(或者叫切线法)对其非线性数学模型进行线性化。这种方法适合于具有连续变化的非线性特性,在一个很小的范围里,将非线性特性用一段直线线性特性来表示。,二.非线性微分方程的线性化,37,对于如图2-5所示的连续变化的非线性特性,设其非线性特性函数为y=f(x),在其相应的工作点A(x0,y0)附近用泰勒级数展开,即将y=f(x)展开为,在“小偏差”条件下,将泰勒级数展开式中的高次幂项略去,只保留一次幂项,即,记系数,,即曲线在A点的斜率,则有,二.非线性微分方程的线性化,38,具有连续变化特性、可以用“小偏差法”进行线性化的非线性特性称为非本质非线性特性,例如图2-5所示的特性。相反,如图2-6所示的非线性特性或其组合则称为本质非线性特性。对于一些非线性特性严重,具有本质非线性特性的物理元器件或系统,不能够用小偏差法进行线性化处理,需要采用非线性系统的研究方法。,二.非线性微分方程的线性化,39,【例2-5】 图2-7所示水箱,输入量为流入量Q1(t),输出量为水箱水位h(t),写出水箱的动态方程式,其中水箱截面积为A。,解 分析水箱工作状态可知,式中a为常数,取决于流出管路的阻力,将上两式合并,有,流出量Q1(t)是水位h(t)的非线性函数,(2-23),(2-24),(2-22),二.非线性微分方程的线性化,40,式(2-23)的非线性关系可以采用小偏差法进行线性化。设水箱的稳定工作点为A(Q20,h0),根据小偏差法有,即,简化并标准化得到,将式(2-22)也改写为增量形式,并将式(2-26)代入,消去中间变量,就得到,(2-26),其中 ,是水箱在工作点处水流管路的阻力系数,称为液阻,2.3 线性系统的传递函数,41,一.传递函数 二.传递函数的性质 三.传递函数的求法 四.典型环节的传递函数,一.传递函数,42,设线性定常系统可由如下n阶微分方程模型描述式所示,对上式等号两边进行拉普拉斯变换,得到,则线性定常系统的传递函数为,一.传递函数,43,常用的控制系统传递函数的表示形式主要有三种。,1.多项式表示形式,2.零、极点表示形式,3. “时间常数”表示形式,二. 传递函数的性质,44,(1)传递函数概念只能应用于线性定常系统的分析和研究,系统传递函数与系统微分方程是唯一对应的。 (2)传递函数只取决于系统的结构和参数,与系统的输入形式和大小无关,并且不反映系统的物理结构。 (3)传递函数是复变量s的有理真分式,其分子的阶次总是小于或等于分母的阶次,即mn。 (4)已知系统的传递函数,可以求得系统的微分方程。如果给定了输入和初始条件,可以求得系统的全响应。 (5)传递函数与输入量的形式、大小无关,但是与输入量的作用点有关,应分别求取每个输入量与系统输出量的传递函数。若系统是多输入、多输出的,则需由传递函数矩阵描述。 (6)传递函数的拉普拉斯反变换是系统单位脉冲响应函数。,三.传递函数的求法,45,1)确定系统和各组成环节的输入、输出变量,根据遵循的工作原理,列写各环节动态微分方程(组)。 2)在零初始条件下对各微分方程进行拉普拉斯变换,得到环节在s域的拉普拉斯变换方程组。 3)消去中间变量,得到关于系统输入、输出变量之间关系的s域代数方程。 4)根据传递函数的定义,由输出量的拉普拉斯变换与输入量的拉普拉斯变换相比,就得到系统的传递函数。 如果已经建立了系统的微分方程,则可在零初始条件下对微分方程进行拉普拉斯变换,按定义得到其传递函数。,1传递函数的建立 传递函数是通过拉普拉斯变换由微分方程模型得到的,建立传递函数的一般步骤为,三.传递函数的求法,46,【例2-6】试求例2-1中RC无源网络的传递函数 Uy(s)/Ur(s),解 由例2-1中可知RC无源网络的微分方程为,由传递函数的定义,就得到RC无源网络的传递函数为,在零初始条件下,对上述微分方程进行拉普拉斯变换,得到,三.传递函数的求法,47,【例2-7】试求例2-2中弹簧-质量-阻尼系统的传递函数F(s)/Y(s),解 由例2-2中可知弹簧-质量-阻尼系统的微分方程为,由传递函数的定义,就得到系统的传递函数为,在零初始条件下,对上述微分方程进行拉普拉斯变换,得到,三.传递函数的求法,48,【例2-8】试求例2-4电枢控制它励直流电动机的传递函数。,解 在例2-4中已求得电枢控制它励直流电动机简化后的微分方程式为,令ML(s)=0,则电枢电压和输出转速之间的传递函数为,在零初始条件下,对上述微分方程进行拉普拉斯变换,得到,三.传递函数的求法,49,令Ua(s)=0,则负载干扰转矩和输出转速之间的传递函数为,因 ,则电枢电压和输出转角之间、负载干扰转矩和输出转角之间的传递函数为,三.传递函数的求法,50,2. 由复阻抗求电路的传递函数,无源网络和运算放大器常用作控制系统的校正装置,可以利用电路复阻抗概念,方便地求得它们的传递函数。,【例2-9】求图2-10所示RC无源网络的传递函Uy(s)/Ur(s) 。,解 由电路相关知识有,由复阻抗分析法有,三.传递函数的求法,51,联立上两式有,无源网络的输出电压为,联立上两式,RC无源网络的传递函数为,三.传递函数的求法,52,【例2-10】 求图2-11和图2-12所示运算放大器的传递函数。,解 根据电子技术知识,可知A点是虚地点,由此可得图2-11所示电路的传递函数为,图2-11所示电路的传递函数为,四.典型环节的传递函数,53,1. 比例环节,比例环节是控制系统中最基本、最常见的一类典型环节,其动态方程为代数方程,K为常数,称为放大系数或增益,则比例环节的传递函数为,从比例环节的数学模型可以看到,它的输出是以K倍幅值对输入信号进行无延迟、无失真的复现。如果输入图2-13a所示阶跃信号,则比例环节的输出如图2-13b所示,可以看到,输出信号和输入信号的波形相同,且没有延迟。,四.典型环节的传递函数,54,【例2-11】试求图2-14所示电位器的传递函数。,解 图2-14所示电位器是一个将角位移或线位移转换成电压信号的装置,在空载时,电位器的角位移与输出电压的关系为,其中E是电源电压 , 是电位器最大工作角度,则 是电位器传递系数。,对上式进行拉普拉斯变换,得到电位器的传递函数为,四.典型环节的传递函数,55,【例2-12】 试求图2-15所示误差检测器的传递函数。,解 误差检测器的输出电压为,其中K为电位器的传递系数, 是两个电位器电刷滑臂角位移之差,称为误差角,如果以误差角为输入信号,误差检测器的输出电压u(t)为输出信号,则由上式可得误差检测器的传递函数为,四.典型环节的传递函数,56,【例2-13】试求图2-16所示直流测速发电机的传递函数。,解 直流测速发电机常常用作控制系统的反馈部件,它是将角速度转换为电压信号的装置,测速发电机的转速越大,则输出的电压就越大,由图2-16有,则测速发电机的传递函数为,四.典型环节的传递函数,57,2. 积分环节,当输出信号与输入信号的积分成正比时,称其为积分环节。设为输入,为输出,则积分环节的动态方程为,式中T称为积分时间常数,K=1/T称为积分速度或积分系数。则积分环节的传递函数为,如果输入图2-17a所示阶跃信号,则积分环节的输出如图2-17b所示。积分特性可能存在于被控对象中,积分特性也常用作改善系统性能的辅助控制作用。应注意的是,积分环节具有饱和的特点,以上线性变化的阶跃响应及其记忆特性都是饱和前的特性。,四.典型环节的传递函数,58,3. 微分环节,理想微分环节的动态方程为,其中Td是微分环节的微分时间常数,则理想微分环节的传递函数为,如果输入图2-18a所示阶跃信号,则理想微分环节的输出如图2-18b所示,理想微分环节的阶跃响应是一个面积为的脉冲信号 。理想微分环节动态特性在实际情况中是较难实现的,被控对象不可能具有微分特性,但常利用微分特性作为改善系统性能的又一辅助控制作用。,四.典型环节的传递函数,59,实际情况中多用具有近似微分特性的实际微分环节来代替理想微分环节,如图2-19a所示RC无源网络,其阶跃响应曲线如图2-19b所示,由实际微分环节的电路图可得到其传递函数为,其中TdRC,当选较小的Td,即Td1时,G(s)Tds,所以可以用此电路作为理想微分环节来使用。,四.典型环节的传递函数,60,4. 惯性环节,惯性环节又称为非周期环节,其动态方程为,其中T是惯性环节的时间常数,K是惯性环节的放大系数,惯性环节的传递函数为,如果输入图2-20a所示阶跃信号,则惯性环节的输出如图2-20b所示,惯性环节的阶跃响应是一个非周期曲线,其输出不能立即跟随输入量的变化,存在着惯性,且时间常数T越大,其惯性越大,随着时间的增加,惯性环节的输出最终趋于新的平衡。,四.典型环节的传递函数,61,5. 一阶微分环节,一阶微分环节的动态方程为,其中Td是一阶微分环节的微分时间常数,则一阶微分环节的传递函数为,四.典型环节的传递函数,62,6. 振荡环节,振荡环节的动态方程为,其中K是振荡环节的增益,T是振荡环节的时间常数,z称为振荡环节的阻尼比,则振荡环节的传递函数为,四.典型环节的传递函数,63,7. 延迟环节,延迟环节的动态方程为,其中t是延迟环节的延迟时间,则延迟环节的传递函数为,如果输入图2-25a所示阶跃信号,则延迟环节的输出如图2-25b所示,可以看到,延迟环节的输出具有和输入一样的波形,只是输出比输入有一个时间上的延迟,其延迟时间为t。,四.典型环节的传递函数,64,【例2-14】试求图2-26所示钢板厚度检测示系统的传递函数。,解 由图2-26有,所以其传递函数为,四.典型环节的传递函数,65,如果将延迟环节的传递函数进行泰勒级数的展开,有,当延迟时间t很小的时候,可见此时延迟环节等效于一个惯性环节,显然,控制器本身是不允许存在延迟的,但测量过程、被控对象、传热、传质的生产过程等,常常存在难以避免的延迟,其动态特性需要由延迟环节描述。延迟过大往往使控制系统性能全面恶化,甚至导致系统失去稳定。,2.4 控制系统的动态结构图与信号流图,66,一.动态结构图的概念 二.动态结构图的绘制 三.动态结构图的等效变换 四.信号流图及梅逊增益公式,一.动态结构图的概念,67,控制系统的动态结构图,也称为系统方框图,实际上是组成系统的每个环节的功能和信号传递、转换的图解表示,由信号线、方框(环节)、引出点、比较点四类基本单元组成。,二.动态结构图的绘制,68,1根据机理分析法绘制控制系统动态结构图的一般步骤,1)根据控制系统的工作原理将系统划分为若干组成环节,确定系统及各组成环节的输入量、输出量。2)根据系统各组成环节输入、输出之间所遵循的物理、电学、化学等定律建立微分方程(组)或s域变换方程(组),然后绘制各环节或方程组的方框图。3)将系统的输入量置于结构图最左端,按照系统中信号的传递顺序,依次从左至右,从输入端到输出端,将各方框图连接起来,就得到系统的动态结构图。,二.动态结构图的绘制,69,【例2-15】试建立图2-28所示的速度控制系统的动态结构图,其中系统的给定电压为输入量,输出负载转速为输出量。,二.动态结构图的绘制,70,解 这个速度控制系统可以看作是由6个环节组成,1)I级运算放大器,2)II级运算放大器,3)功率放大器,4)直流电动机,5)减速齿轮系,6)直流测速发电机,二.动态结构图的绘制,71,依照信号传递的顺序依次作出以上环节的方框图并连接,就可得到如图2-29所示的速度控制系统的动态结构图。,二.动态结构图的绘制,72,【例2-16】 试建立图2-30所示的位置随动系统的动态结构图。,解 系统由角度误差检测器、放大器、直流电动机和减速齿轮系4个装置组成,1)角度误差检测器,二.动态结构图的绘制,73,2)放大器,3)通过减速齿轮系带载的直流电动机,电动机轴上的总转动惯量和总粘性摩擦系数为,将上式带入例2-4中电动机方程式中,有,将环节方框图依照信号传递的顺序依次连接,就可得到如图2-32所示的位置随动系统的动态结构图。,4)减速齿轮系环节,二.动态结构图的绘制,75,2由复阻抗概念建立无源网络动态结构图,建立无源网络动态结构图时,可直接由复阻抗概念写出电路的复数域代数方程,不需列写电路微分方程,根据各复域代数方程作图即可得到网络动态结构图。,【例2-17】绘制图2-33所示 RL无源网络的结构图。,解 根据复阻抗建立网络复数域方程 ,为便于绘制方框图,写在方程左端是各图的输出量。,从输入端入手,依次从左至右,将各方框图连接起来,就得到如图2-35无源网络的动态结构图。,依照上式传递函数方程组依次绘制方框图,如图2-34所示。,三.动态结构图的等效变换,77,1环节的基本联接规律,(1)串联,由图2-41a可知,消去中间变量X(s)有,三.动态结构图的等效变换,78,(2)并联,由图2-42a可知,消去中间变量X1(s)、 X2(s)有,三.动态结构图的等效变换,79,(3)反馈,由图2-43a可知,消去中间变量E(s)、B(s)有,三.动态结构图的等效变换,80,2系统动态结构图的变换和简化,(1)引出点的等效移动 1)引出点的前移,引出点前移的等效变换如图2-45所示,在引出点移动的前后,要保持输出的一致性,即在引出点移动前后都有,三.动态结构图的等效变换,81,(1)引出点的等效移动 2)引出点的后移,引出点后移的等效变换如图2-46所示,同样在引出点移动的前后,要保持前后输出的一致性。,引出点 移动前,引出点移动后,三.动态结构图的等效变换,82,(2)综合点的等效移动 1)综合点的前移,综合点前移的等效变换如图2-47所示,在综合点移动的前后,要保持输出的一致性。,综合点移动前,综合点移动后,三.动态结构图的等效变换,83,(2)综合点的等效移动 2)综合点的后移,综合点后移的等效变换如图2-48所示,同样在综合点移动的前后,要保持输出的一致性。,综合点移动前,综合点移动后,三.动态结构图的等效变换,84,(3)相邻引出点的移动和合并,相邻的引出点之间可以任意的交换位置,并且可以依据实际情况进行合并。如图2-49所示,这样的变换并不影响信号的传递关系。,三.动态结构图的等效变换,85,(4)相邻综合点的移动和合并,相邻的综合点之间同样可以任意的交换位置,并且可以依据实际情况进行合并,如图2-50所示。要注意的是,只有相邻的同类点可以进行任意的移动和合并,相异类点之间不能作任意的移动和合并。,三.动态结构图的等效变换,86,【例2-19】试简化例2-18无源网络在考虑负载情况下的动态结构图图2-39和图2-40,并求取系统传递函数。,解 对于动态结构图2-39有,传递函数为,三.动态结构图的等效变换,87,解 对于动态结构图2-40有,传递函数为,三.动态结构图的等效变换,88,【例2-2-0】试简化2-54所示结构图,并求取系统的传递函数。,解 对于动态结构图2-39有,三.动态结构图的等效变换,89,解 对于动态结构图2-54有,传递函数为,四.信号流图及梅逊增益公式,90,1信号流图的组成,信号流图中的节点主要有三种:(1)源节点:只有信号输出支路,而没有输入支路的节点,称为源节点或输入节点,(如x1)。(2)阱节点:只有信号输入支路,而没有输出支路的节点,称为阱节点,(如x6)。(3)混合节点:既有信号输入支路,又有输出支路的节点,称为混合节点,(如x2、x3、x4、x5)。,四.信号流图及梅逊增益公式,91,1)通路:指从一个节点出发,沿着支路箭头的方向经过多个节点的路径。 2)前向通路:信号从输入节点向输出节点传递时,每个节点只经过一次的通路。 3)回路:通路的起点和终点都是同一个节点,且通路中每个节点只经过一次。 4)不接触回路:回路与回路之间没有公共节点,称这些回路为不接触回路。,在信号流图中,还会出现以下术语,四.信号流图及梅逊增益公式,92,2信号流图的绘制,【例2-21】 试由式(2-88),绘制图2-33所示RL无源网络的信号流图。,解 由式(2-88)绘制的信号流图如图2-57所示,四.信号流图及梅逊增益公式,93,【例2-22】已知图2-36所示的 RC无源网络的动态结构图如图2-39所示,试绘制其信号流图。,解 在动态结构图中,只需要将变量变成节点,方框中的传递函数作为对应通路的支路增益就可得到RC无源网络的信号流图,如图2-58所示。,四.信号流图及梅逊增益公式,94,3梅逊增益公式,应用梅逊增益公式,可以直接求出任意源节点和阱节点之间的传递函数G(s),梅逊公式为,其中为特征式,其计算公式为,Pk为第k条前向通道总增益;k为第k 条前向通路特征式的余子式,即把与该通路相接触的回路增益置为零后,特征式所余下的部分,也就是与第k条前向通路不相接触的那一部分信号流图的特征式;L1是所有单独回路的增益之和,L2是所有两个互不接触回路的增益乘积之和,L3是所有三个互不接触回路的增益乘积之和,Lm是所有m个互不接触回路的增益乘积之和。,四.信号流图及梅逊增益公式,95,【例2-23】 试利用梅森增益公式求图2-58所示信号流图的传递函数。,解 1)图2-58所示信号流图只有一条前向通道,即,四.信号流图及梅逊增益公式,96,2)信号流图中三个单独回路,四.信号流图及梅逊增益公式,97,信号流图中没有三个互不接触的回路,所以,所以,其中回路a和回路b是两个互不接触的回路,所以,则,3)把以上要素代入梅逊增益公式,就可以得到传递函数,四.信号流图及梅逊增益公式,98,【例2-24】设控制系统的动态结构图如图2-59所示,试求该系统的传递函数 。,解 1)由图2-59,可以得到该控制系统的信号流图如图2-60所示,四.信号流图及梅逊增益公式,99,2)系统有一条前向通道,3)信号流图有四个单独回路,系统四个回路都互相有接触,且与唯一的前向通道都有接触,所以,4) 由梅逊增益公式得到系统的传递函数为,四.信号流图及梅逊增益公式,100,【例2-25】 已知系统的信号流图如图2-61所示,求其传递函数x5/ x1。,解 从图2-61所示系统信号流图可以看到有5个单独回路,四.信号流图及梅逊增益公式,101,其中回路d和回路c、e是两两不接触回路,所以有,则特征式为,四.信号流图及梅逊增益公式,102,2)图2-61所示系统信号流图有2条前向通道,3)由梅逊公式就可以得传递函数,,,2.5 闭环控制系统的传递函数,103,一.闭环控制系统的开环传递函数 二.给定输入信号作用下系统的闭环传递函数 三.干扰信号作用下系统的闭环传递函数 四.闭环控制系统的误差传递函数 五.多输入多输出系统的传递函数矩阵,一.闭环控制系统的开环传递函数,104,反馈信号与偏差信号之比,称为闭环系统的开环传递函数。,一.闭环控制系统的开环传递函数,105,闭环系统的开环传递函数有以下三种不同表达形式,(1)多项式比形式,(2)零极点形式,(3)时间常数形式,二.给定输入信号作用下系统的闭环传递函数,106,当系统只有给定输入R(s)作用,而干扰作用N(s)=0时,图2-62变换为图2-63所示的方框图,则系统的闭环传递函数为,式(2-117)称为在给定输入信号作用下系统的闭环传递函数,此时系统的输出为,三.干扰信号作用下系统的闭环传递函数,107,当系统只有干扰信号N(s) 作用,而给定输入作用R(s) = 0时,图2-62变换为图2-64所示的方框图,则系统在N(s)单独作用下的闭环传递函数为,N(s)单独作用下系统的输出为,三.干扰信号作用下系统的闭环传递函数,108,当给定输入R(s)和干扰输入N(s)同时作用时,根据线性系统的叠加原理,系统的输出为,四.闭环控制系统的误差传递函数,109,由叠加原理求得系统的在给定输入r(t)与干扰输入n(t)同时作用下系统总的误差的拉普拉斯变换式为,四.闭环控制系统的误差传递函数,110,1. R(s)作用下系统的误差传递函数,令N(s)=0,以E(s)为输出量,则图2-62可变为图2-65,此时系统的误差传递函数为,四.闭环控制系统的误差传递函数,111,2. N(s)作用下系统的误差传递函数,令R(s)=0,以N(s)为输入量,E(s)为输出量,则图2-62可变为图2-66,此时系统的误差传递函数为,四.闭环控制系统的误差传递函数,112,闭环控制系统的误差e(t),定义为给定输入信号r(t)与反馈信号b(t)之差,即,五.多输入多输出系统的传递函数矩阵,113,多输入多输出系统的输入量与输出量之间的关系可以用传递函数矩阵描述。图2-67所示系统有两个输入量和两个输出量。用叠加定理可以分别求出每一个输入量单独作用时,各输出量与各输入量之间的传递函数。,五.多输入多输出系统的传递函数矩阵,114,当R1(s)单独作用时,为了求出其与Y1(s)、Y2(s)之间的传递函数,可将图2-67改画为图2-68。,由图2-68可得,五.多输入多输出系统的传递函数矩阵,115,同理,可得当R1(s)单独作用时,其与Y1(s)、Y2(s)之间的传递函数,综上,各输入量与输出量之间的关系式为,写成矩阵表示形式为,2.6 MATLAB中数学模型的表示,116,一.数学模型的MATLAB表示及其转换 二.应用MATLAB指令简化动态结构图,一.数学模型的MATLAB表示及其转换,117,在Matlab中可以用conv( )函数、tf( )函数和zpk( )函数实现传递函数有理分式形式和零极点形式的表示。,【例2-26】 试给出以下传递函数在Matlab中的表示方法。,一.数学模型的MATLAB表示及其转换,118,解 1)在Matlab命令窗口(Command Window)输入以下命令 num=2 1 3 den=1 2 4 3 1 G1=tf(num,den) 或者只用一个命令 G1=tf(2 1 3, 1 2 4 3 1),则可得到如下运行结果num = 2 1 3den = 1 2 4 3 1Transfer function: 2 s2 + s + 3-s4 + 2 s3 + 4 s2 + 3 s + 1,一.数学模型的MATLAB表示及其转换,119,2)在Matlab命令窗口(Command Window)输入以下命令 z= -1 p=-2 -3 k=6 G2=zpk(z,p,k),则可得到如下运行结果z = -1p = -2 -3k = 6Zero/pole/gain: 6 (s+1)-(s+2) (s+3),一.数学模型的MATLAB表示及其转换,120,3)在Matlab命令窗口(Command Window)输入以下命令 num= 1 2 5 den=conv(1 1,conv(1 2,1 3) G3=tf(num,d

    注意事项

    本文(自动控制原理全套ppt课件.pptx)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开