第十一章化学动力学基础(二)课件.ppt
第十一章 化学动力学基础(二),本章讨论反应速率理论及一些特殊反应的动力学;反应速率理论主要包括碰撞理论、过渡态理论和单分子反应理论,可应用于基元反应速率常数的 理论计算。,1,谢谢观赏,2019-8-23,基元反应速率常数 k i 的组合 总包反应的 k;反应速率常数的准确理论预示是一个远未解决的问题,也是目前相对活跃的研究领域。,2,谢谢观赏,2019-8-23,11.1 气相反应的硬球碰撞理论,一、理论假设硬球碰撞理论建立于 1920 年左右,用于计算基元双分子气相反应的速率常数。硬球碰撞理论用到以下几个假设: 1)分子为硬球; 2)分子 A 和分子 B 必须碰撞才能发生反应;,3,谢谢观赏,2019-8-23,3)(不是所有碰撞都发生反应)只有当沿碰撞分子中心联线方向的相对平动能超过某一阈能 Ec 时,才能发生反应;4)反应过程中分子速率维持 Maxwell-Boltzmann 平衡分布。,4,谢谢观赏,2019-8-23,a)硬球模型是一个粗略的近似,因为大多分子结构、原子分子轨道不具球对称;b)无效碰撞频率远大于(高能分子的)有效碰撞频率,由无效碰撞之间进行的能量再分配足以弥补高能分子由于有效碰撞反应 产生新物种而导致的动能损失。因而反应过程中体系分子速率维持 M-B 分布。,说明:,5,谢谢观赏,2019-8-23,二、双分子的互碰频率,首先假设 A、B 混合气中只有某一个 A1 分子以平均速率 uA 运动,而其他所有的(A 和 B)分子都是静止的,则此 A1 分子与 B 分子的碰撞频率为:,混合气 A、B 分子间的碰撞频率,严格的推导比较复杂,在此只介绍简单处理方法,但结果同样正确。,6,谢谢观赏,2019-8-23,ZAB = uA (rA+ rB)2(NB/V ) = uA dAB2 (NB/V ) (1),单位时间 A1 扫过的碰撞体积; NB/V 单位体积 B 分子数; dAB 有效碰撞直径(俗称,并不严格,因为不一定发生反应)。,其中: uA (rA+ rB)2,7,谢谢观赏,2019-8-23,实际上,B 分子并非静止不动,所以要用 A 相对于 B 的相对平均速率 uAB 来代替上式中的 uA;显然,A、B 碰撞时,矢量 uA、uB 之间的夹角可以从 0 180,并且各向几率均等。如图:,ZAB = uA dAB2 (NB/V ) (1),8,谢谢观赏,2019-8-23,代入 (1) 式:,ZAB = uA dAB2 (NB/V ) (1),9,谢谢观赏,2019-8-23,则单位体积内所有运动着的 A 分子与 B 分子的碰撞频率为:,10,谢谢观赏,2019-8-23,由分子运动论得:,11,谢谢观赏,2019-8-23,12,谢谢观赏,2019-8-23,13,谢谢观赏,2019-8-23,若体系中只有一种 A 分子,则单位体积内某一 A i 分子与其它 A j ( j i ) 分子的碰撞频率:,14,谢谢观赏,2019-8-23,单位体积内所有 A 分子间的碰撞频率即为:,15,谢谢观赏,2019-8-23,16,谢谢观赏,2019-8-23,常温常压下,ZAB 1035 m3s1,若每次碰撞均为可发生反应:A + B P 的有效碰撞,则单位体积内 A 分子的消耗速率即为 A、B 分子的碰撞频率:,17,谢谢观赏,2019-8-23,18,谢谢观赏,2019-8-23,这样的 k 计算值通常远远大于实验值,可见并非每次碰撞都发生反应,ZAB 中仅一小部分是有效碰撞;令 q 为有效碰撞分数,则:,A + B P,19,谢谢观赏,2019-8-23,20,谢谢观赏,2019-8-23,21,谢谢观赏,2019-8-23,三、硬球碰撞模型,1. 硬球分子 A、B 的总能量(动能)、相对运动能:,总动能 也可分解为两分子体系的质心运动能 g 和两个分子间的相对运动能 r 之和:,22,谢谢观赏,2019-8-23,mA + mB :质心质量ug :质心速率ur :A、B 分子相对速率 = mAmB / (mA+mB) :A、B 分子折合质量,23,谢谢观赏,2019-8-23,显然,质心整体运动能 g 对两个分子的碰撞反应没有贡献;而相对平动能 r 则能衡量两个分子接近时的相互作用能的大小。,24,谢谢观赏,2019-8-23,2. 碰撞参数与反应截面:考虑相对动能 r 时,可设 A 分子以相对于 B 的速度 ur向相对静止的 B 分子的运动。如图:,25,谢谢观赏,2019-8-23,相对速度 ur 与碰撞时的连心线 AB 的夹角为 ,通过 B 球中心作 ur 的平行线,两者 相距为 b,可以用 b 的大小表示两个分子可达到的接近程度。,26,谢谢观赏,2019-8-23,碰撞参数:b = dABSin (0 90)当 A 分子与 B 分子 正碰时, = 0,b = 0侧碰时,0 90,b = dAB Sin没碰时,b dAB,27,谢谢观赏,2019-8-23,碰撞截面:c = bmax2 = dAB2即球心落在此截面内的 A 分子都可与 B 分子相碰。分子相碰时,其相对平动能在连心线方向上的分量(对反应有用)为:,28,谢谢观赏,2019-8-23,r = (urCos)2 = ur2 (1Sin2 ) = r (1 b2/ dAB2 ) 并非每次碰撞都有效,只有 r 超过某一值 c 时,才能发生有效碰撞,此 c 值称为化学反应的临界能或阈能。,29,谢谢观赏,2019-8-23,即:有效碰撞的必要条件: r (1 b2 / dAB2 ) c 或: b2 dAB2 ( 1 c / r ) br2 br 为有效反应碰撞参数的最大值。,r = r (1b2/dAB2 ),30,谢谢观赏,2019-8-23,当碰撞参数: b br 时,为有效碰撞。因此,可定义 反应截面: r br2 = dAB2 (1 c / r ) = dAB2 1 2c /( ur2 ),b2 dAB2 ( 1 c / r ) br2,31,谢谢观赏,2019-8-23,由上式:当 r c 时,r = 0;当 r c 时,r 随 r 的增加而增加。,r br2 = dAB2 (1 c / r ) = dAB2 1 2c /( ur2 ),32,谢谢观赏,2019-8-23,四、由微观粒子反应计算反应速率常数,设 A、B 为两束相互垂直的交叉粒子(原子、分子)流,并设在交叉区域内只能发生单次碰撞(由于单位体积中粒子数很少)。,33,谢谢观赏,2019-8-23,A分子束的强度(单位时间通过单位截面的粒子数):,34,谢谢观赏,2019-8-23,当 A 通过交叉区域 ( x 0 ) 时,与(相对静止的)B 粒子碰撞,IA 下降,即: d IA(x) = IA(x) ( NB / V ) d x,35,谢谢观赏,2019-8-23,IA 在 x 处的下降量正比于 A 束的强度 IA(x)、B 粒子的浓度 ( NB /V ) 及 A 通过交叉区域的距离 d x 。, d IA(x) = IA(x) ( NB / V ) d x,36,谢谢观赏,2019-8-23,比较等式右侧各项,显然比例常数 具有面积的量纲 有碰撞截面特性。, d IA(x) = IA(x) ( NB / V ) d x,37,谢谢观赏,2019-8-23,事实上,可以想象只有有效碰撞(b 小, 小,使 A 反弹)才能使 A 束强度 IA下降,即: d IA(x) = rIA(x) ( NB /V ) d x (1),38,谢谢观赏,2019-8-23,又:d IA(x) = d ur (NA/V ) = ur d (NA/V ) = (dx /d t ) d (NA/V ) 代入 (1) 式:, d IA(x) = rIA(x) ( NB /V ) d x (1),39,谢谢观赏,2019-8-23, d ( NA/ V ) /d t = r IA(x) ( NB/ V ) = r ur ( NA/ V ) ( NB/ V ) 即微观反应速率常数: k (ur) = urr (ur) (2), (dx /d t ) d (NA/V ) = rIA(x) ( NB /V ) d x,40,谢谢观赏,2019-8-23,NA/ V 、 NB/ V :浓度单位为 m 3 ; r为 ur 的函数: r(ur) = dAB2 1 2 c /( ur2 ),k (ur) = urr (ur) (2),41,谢谢观赏,2019-8-23,碰撞反应的分子相对速率 ur 服从 M-B 平衡分布。分布函数:,k (ur) = urr (ur) (2),42,谢谢观赏,2019-8-23,所以宏观反应速率常数:,将 (2)、(3) 式代入上式:,k (ur) = urr (ur) (2),43,谢谢观赏,2019-8-23,将硬球碰撞模型: r ( r ) = dAB2 (1 c / r ) 代入上式,得到简单碰撞理论 (SCT ) 的微观速率常数 k SCT ( T ):,44,谢谢观赏,2019-8-23,45,谢谢观赏,2019-8-23,在微观反应速率的两边约掉一个 L 后,右边多了 L 一次方。宏观速率常数 k SCT 为:,将微观反应浓度项 NA/ V、NB/ V 用 AL、B L 表示:,46,谢谢观赏,2019-8-23,将 mol 折合质量 M = L mol 气体常数 R = kB L mol 临界能(阈能)Ec= cL 代入上式:,47,谢谢观赏,2019-8-23,对照前述由双分子碰撞频率得到的 k:,48,谢谢观赏,2019-8-23,温度 T 越高,有效碰撞分数 q 越大;阈能 Ec 越高,有效碰撞分数 q 越小。,49,谢谢观赏,2019-8-23,讨论:,对于同分子双分子反应: 2 A P,50,谢谢观赏,2019-8-23,五、反应阈能 (Ec) 与活化能 Ea(T)、指前因子A( T ) 的关系,51,谢谢观赏,2019-8-23,52,谢谢观赏,2019-8-23,则:,注意此 k (T) 表达式与 kSCT (T) 的不同,指数项含活化能 Ea。,53,谢谢观赏,2019-8-23,讨论:,1)因为 RT 2 kJ /mol (500K时) Ec( 100 kJ / mol) 所以可以认为 Ec Ea,Ec 很接近于活化能 Ea。,54,谢谢观赏,2019-8-23,2)简单碰撞理论(SCT)不能给出阈能 Ec 的计算方法,但能给出 Arrhenius 指前因子A(T):,并且得到: A T 1/2,55,谢谢观赏,2019-8-23,当 T = 800 K,T1/2 = 28.28;当 T = 810 K,T1/2 = 28.46; A /A 0.64%这与升温 10C 反应速率 k 成倍增长相比可忽略不计。这说明在一定的高温时,指前因子A (T) 对 T 并不敏感。而且由于SCT 本身比较粗糙,因此 A T 1/2 这一预言关系在定量上是很粗糙的。,56,谢谢观赏,2019-8-23,例:在温度 24003000K,双分子基元反应: CO + O2 CO2 + O 用粘度测量方程测得: d(O2 ) = 3.6A,d(CO) = 3.7A 计算 SCT 的 A (T)。解:平均温度为 T = 2700 K,57,谢谢观赏,2019-8-23,58,谢谢观赏,2019-8-23,若用 2400 K、3000 K 代替 2700K,A 值只略微改变:7.6 108, 8.6 108 。,实验方法得到的 A = 3.5 106 m3mol1s1,即计算值比实验值大 230 倍。显然,这一差别不能归咎于实验误差。,59,谢谢观赏,2019-8-23,事实上,对于不少反应,计算得到的 A (T) 值远高于实验值。因此 k (T) 表达式中,还需在指前因子 A (T) 前增加一个修正因子 P 来校正。,60,谢谢观赏,2019-8-23,六、概率因子 P,概率因子也叫空间因子、方位因子等。 0 P 1,采用概率因子 P 的解释是:,61,谢谢观赏,2019-8-23,1)硬球模型忽略了分子的取向,而实际碰撞分子必须正好处在发生反应的合适的方位上才能反应。,例如对于基元反应: CO + O2 CO2 + O,认为如果 CO 的 C 端碰撞 O2 就发生反应; 而 CO 的 O 端碰撞 O2 则不会反应。,62,谢谢观赏,2019-8-23,仅当 90, 90 时,才可能有反应。, 角:0 180 角:0 360,这还是忽略 O2 分子结构的情形。反应分子越复杂,由于这种空间效应,相应的 P 因子越小。,63,谢谢观赏,2019-8-23,PASCT 表示只有在某一分子取向的碰撞才可能反应;PASCT expEa / RT 则为进一步考虑了能量因素的情形。,64,谢谢观赏,2019-8-23,2)硬球模型忽略了分子振动、转动等因素,这些因素能使大部分的碰撞分子之间的能量传递需要一定时间(而刚性球体碰撞的能量传递无需时间);这就使得相碰的分子间在其能量未来得及完全传递前就分开了,成为无效碰撞。反应分子越大,这种影响越大,P 越小。,65,谢谢观赏,2019-8-23,七、碰撞理论的意义及缺陷,意义:1)碰撞理论对 Arrhenius 公式中的指前因子 A(T) 和指数项提出了较明确的物理意义:,66,谢谢观赏,2019-8-23,所计算的速率常数值对某些简单反应与实验值相符。,67,谢谢观赏,2019-8-23,2)SCT 提出了一些有用的概念,如: 碰撞参数 b 碰撞截面 反应截面 r 反应阈能 Ec 等在反应速率理论发展中起了很大作用。,68,谢谢观赏,2019-8-23,1)概率因子 P:110 9,变化范围如此之大,尚未有十分恰当全面的解释,预测其大小则更加困难。原因在于 SCT 把分子看作硬球模型的确过于简单,结果也就相当粗略了。,缺陷:,69,谢谢观赏,2019-8-23,2)用 SCT 计算 k 时,Ec 值还要由实验活化能 Ea 求得。因此碰撞理论还只是半经验的,这在理论上并不完善。,70,谢谢观赏,2019-8-23,11.2 过渡态理论(TST),硬球碰撞理论无法给出准确的反应速率常数,精确的理论必须考虑分子间真实的作用力:包括分子的内部结构及它们的振动和转动。1935年后,Eyring 等人在统计力学和量子力学发展的基础上提出了所谓的 “过渡态理论”。,71,谢谢观赏,2019-8-23,一、基本假设,1)化学反应不只是通过简单碰撞就变成产物。作用在某一键上的力,既与分子内力(如振动运动)有关,又与分子间力有关。不能孤立、单独地处理某一个碰撞分子,而必须设想两个碰撞分子形成一个单一的量子力学统一体,称为 “过渡态”。,72,谢谢观赏,2019-8-23,2)由反应物形成“过渡态”需一定的活化能,所以过渡态又称 “活化络合物”,活化络合物与反应分子间建立化学平衡:,73,谢谢观赏,2019-8-23,3)过渡态分子不具有任何持久性和稳定性,它只是在碰撞过程中的一特殊阶段,并且一旦形成就有向产物转化的趋势。总反应的速度由 “过渡态” 转成产物的速率决定。,74,谢谢观赏,2019-8-23,二、基本物理模型 势能面,分子之间的相互作用势能取决于分子间的相对位置。在 “反应物 - 过渡态 - 产物” 的转变过程中,由于分子内(间)各原子核间距离的不断变化,体系的势能也不断变化。体系势能随核间距变化的函数:EP ( r ),叫势能面。,75,谢谢观赏,2019-8-23,讨论,1)核间距变量仅一个(如双原子分子),势能面 EP ( r ) 为一条二维曲线;2)核间距变量有二个(如线性三原子分子),势能面 EP ( r ) 为一个三维曲面;3)通常 EP ( r ) 的变量多于两个,不能在三维空间得到 EP 曲面,即无法作图表示,但我们仍旧称 EP ( r ) 函数为势能面。,76,谢谢观赏,2019-8-23,在 “反应物 - 过渡态 - 产物” 的转变过程中,体系的势能变化在 EP ( r ) 势能 面上是沿着一条特定的路线进行的,且在这条路线上形成过渡态需要的活化能最小。,77,谢谢观赏,2019-8-23,1. 双原子分子体系的势能 EP ( r ),最常用的是莫尔斯(Morse)经验公式:,式中,r0: 分子中原子间的平衡核间距; De:势能曲线的阱深度(绝对值); a: 与分子结构特性有关的常数。,排斥能 (+) 吸引能 (),78,谢谢观赏,2019-8-23,2)当 r r0,核间有排斥力;,1)体系势能在平衡核间距 r = r0 时最低: EP ( r0 ) = De,如图所示:,79,谢谢观赏,2019-8-23,3)当 r r0,核间表现有吸引力(化学键力)一般地,体系电子态处于基态,如果分子处于振动基态(v = 0 ),则,80,谢谢观赏,2019-8-23,把基态分子离解为孤立原子需要的解离能 D0可以从光谱数据得到,显然: D0= De E0 (E0 为零点能)D0、De 、E0 均为正值。,81,谢谢观赏,2019-8-23,2. 简单反应的势能面,研究最多的势能面是反应: A + B-C ABC A-B + C 式中 A 为原子,B-C , A-B 为双原子分子。例如反应: D + H2 DH + H,82,谢谢观赏,2019-8-23,当 A 接近 B-C 时,B-C 键削弱,开始形成过渡态(活化络合物),其势能面的振动自由度为: 3 3 3 3 = 3(三变量函数) (平)(转),A + B-C ABC A-B + C,这三个变量可定为:rAB,rBC,ABC即: EP = EP(rAB,rBC,ABC),83,谢谢观赏,2019-8-23,对于三变量的函数 EP,不能在三维空间中作势能曲面。可暂时固定 ABC = ,则 EP = EP(rAB,rBC)将 rAB、rBC 置于两个水平轴上(如 x 轴 , y 轴), 将 EP 置于 z 轴上,就可得到三维空间中的 EP(rAB , rBC )势能曲面。,EP = EP(rAB,rBC,ABC),84,谢谢观赏,2019-8-23,曲面上任意一点的高度(z = EP)表示原子间距离为 rAB、rBC 时的体系势能;对于不同的 值,若 变化不是很大,势能面有相似的轮廓。,EP = EP(rAB,rBC),85,谢谢观赏,2019-8-23,由量子力学可知,在 B-C 中间区域的电子几率密度最大;所以当 A 沿着 B-C 轴接近 时,A 和 B-C 分子的电子云重叠最少,其 Pauli 排斥最小(相当于简单碰撞理论中的方位因子)。,86,谢谢观赏,2019-8-23,所以 “共线碰撞” 是最可几的有效碰撞。而能够形成反应的碰撞角度ABC 应接近180,其平均值为160(如上图)。,87,谢谢观赏,2019-8-23,下图所示为 =180 的 EP(rAB , rBC)势能面的俯视图,实线表示势能面的等高线(势能面可通过计算得到)。,88,谢谢观赏,2019-8-23,由图可知,这个势能面有两个山谷,山谷的谷口分别对应于反应的初态 R (A + B-C ) 和终态 P (A-B + C )。,89,谢谢观赏,2019-8-23,1)反应物 R ( A + B-C ) 从右山谷的谷底沿虚线往左上爬,这时 rAB下降,但 rBC 几乎不变;,90,谢谢观赏,2019-8-23,2)当达到势能面的 “S” 点,rAB rBC,过渡态 ABC 形成活化络合物 ABC ;,91,谢谢观赏,2019-8-23,3)然后 ABC 再从左山谷沿虚线降至谷底 P (A-B+C)。,92,谢谢观赏,2019-8-23,现需要确定势能面上联结反应物 R (A+B-C) 到产物 P (A-B+C) 的最低势能途径,即最可几的反应路线。,93,谢谢观赏,2019-8-23,实际上,如图所示的(红色)虚线就是一条最省能量的反应途径,称之为 “反应坐标”、“反应轴”。,94,谢谢观赏,2019-8-23,图中的 “S” 点为最省能量途径上的势能最高点。解析几何中称之为 “鞍点” (Saddle-point),因为“S” 点周围的势能面类似于马鞍面,有: ES Ev、Ew, ES Eq、Et,95,谢谢观赏,2019-8-23,形象地说:一个步行者从 “r” 点开始面向“q ”点,位于一个深谷,左侧有无限高的陡壁,右侧有一个高台。,96,谢谢观赏,2019-8-23,当他从 r q S 时,他的高度逐渐由 0 0.4 eV(右侧高台高 4.7eV )。“S ”点附近区域是联结反应物深谷到产物深谷的 “隘口”。,97,谢谢观赏,2019-8-23,若以反应坐标为横坐标(即将曲线 r S p 拉直了),对应的势能面上的势能为纵坐标作图,得到反应途径上势能面的剖面图:,98,谢谢观赏,2019-8-23,99,谢谢观赏,2019-8-23,由图看出,从反应物 生成物,虽然沿反应坐标通过鞍点 S 进行,是最省能量的线路;但即使如此,也需越过势垒 Eb。,100,谢谢观赏,2019-8-23,图中E0是活化络合物与反应物两者的零点能之差值;,Eb 是活化络合物与反应物之间由势能面计算得到势垒高度;势能垒 Eb 的存在也说明了实验活化能 Ea 的实质。,101,谢谢观赏,2019-8-23,3. 由过渡态理论计算反应速率,由过渡态理论的基本假设,过渡态活化络合物与反应物达化学平衡,而活化络合物向产物转化是整个反应的速决步:,102,谢谢观赏,2019-8-23,如前所述,ABC 通常为线性(或近乎线性)分子,其振动自由度:3n 3 2 = 4,103,谢谢观赏,2019-8-23,由于沿反应坐标鞍点 “S” 的任一侧,势能 EP 均下降,所以不对称的伸缩振动是无回收力振动,将导致络合物的分解。,104,谢谢观赏,2019-8-23,上半振动周期(红色)时, A + BC回到反应物;下半振动周期(黑色)时, AB + C生成产物。两者机会均等。,105,谢谢观赏,2019-8-23,若不对称的伸缩振动频率为 ,则络合分子ABC 分解的频率为 2,其中分解成产物(AB + C)的频率(黑色振动)为 。所以产物的生成速率:,106,谢谢观赏,2019-8-23,速率常数: k = Kc 其中,平衡常数 Kc 可用统计热力学或热力学方法求得。,r = ABC = Kc ABC = k ABC,107,谢谢观赏,2019-8-23,1)统计热力学方法简介,由(上册)统计热力学计算平衡常数的公式为:,108,谢谢观赏,2019-8-23,式中:q : 不包括体积项(V)的分子总配分函数。通俗讲,配分函数即微观状态数(各微观状态机率均等)。f : 不包括体积项(V)及零点能(E0)的分子总配分函数。E0: 过渡态与反应物零点能之差值。,109,谢谢观赏,2019-8-23,不对称伸缩振动配分函数:,将产生活化络合物分解的不对称伸缩振动自由度分离出来。则,110,谢谢观赏,2019-8-23,式中:f 为除去了分解振动自由度的活化络合物配分函数。,111,谢谢观赏,2019-8-23,速率常数:,112,谢谢观赏,2019-8-23,只要知道分子的质量、转动惯量、振动频率等微观物理量(可从光谱数据得到),就可算出配分函数;但由于得不到过渡态活化络合物的光谱数据,所以 f 只有通过势能面计算来求。而 E0 也可从势能面上的能垒值 Eb 及零点能来求算:,113,谢谢观赏,2019-8-23,114,谢谢观赏,2019-8-23,上述计算中,不通过动力学实验数据,直接计算得到反应速率常数理论值 k;因此过渡态理论又被称为 “绝对反应速率理论”;但计算难度很大(需通过势能面计算 f )。,115,谢谢观赏,2019-8-23,2)热力学方法:,给出一个简单、不严格的推导,而结论是正确的。对溶液中的反应来说,由于溶剂与溶质之间的相互作用,液相中物质的配分函数更难求算。但溶液中的某些热力学量(如Gibbs自由能)却较易估算。由(1)式得:,116,谢谢观赏,2019-8-23,式中 f 是扣除了分解振动自由度的活化络合物配分函数,故 Kc 也是一个类似于平衡常数的因子。,117,谢谢观赏,2019-8-23,由于分解振动(不对称伸缩振动)频率低,且一旦振动即分解,故分解振动对活化络合物的吉布斯自由能 (Gm) 的贡献可以忽略,即: (Gm ) (Gm ),118,谢谢观赏,2019-8-23,根据热力学公式:,119,谢谢观赏,2019-8-23,代入 (2) 式:,120,谢谢观赏,2019-8-23,121,谢谢观赏,2019-8-23,说明:1)只要计算出活化熵、活化焓或活化自由能,即可计算反应的速率常数;,122,谢谢观赏,2019-8-23,2)反应速率是活化熵、活化焓(活化能 Ea)两者共同作用的结果,而且两者所起的作用刚好相反(指数符号相反)。,123,谢谢观赏,2019-8-23,四、过渡态理论(TST)的优越性及需改进之处,优越性:1)在过渡态理论的 k 表达式中无需引入不易确定的概率因子 P(对比 SCT);2)过渡态理论原则上可不通过动力学实验数据,直接计算得到 k 绝对反应速率理论。,124,谢谢观赏,2019-8-23,需改进之处:1)只能解决极简单的反应,对于比较复杂的反应体系,量子力学的能量计算(势能面计算)相当困难,活化络合物的几何构型也不易确定。2)求 k 时,假设 “ 活化络合物与反应物达平 衡 ” 的理由还不甚充分,尚需进一步寻找各种因素与反应速率的定量关系,使理论更趋完善。,125,谢谢观赏,2019-8-23,五、几个能量间的关系,1. Ea 与 EcEc:阈能,分子发生有效碰撞时相对平动能在连心线上分量的最低值;Ea:实验活化能,宏观量,活化络合物平均能量(kJ/mol)与反应物分子平均能量之差。,由 SCT 得到,126,谢谢观赏,2019-8-23,2. E0 与 Eb,E0:活化络合物与反应物的零点能之差;Eb:反应物形成活化络合物所须越过的能垒高度;,127,谢谢观赏,2019-8-23,两者均可在势能曲线上标出。,128,谢谢观赏,2019-8-23,3. Ea E0,代入 Ea 定义式:,129,谢谢观赏,2019-8-23,式中常数 m 对一定体系有一定值(包含了kBT/ h 项及配分函数项中所有与 T 有关的因子)。,130,谢谢观赏,2019-8-23,131,谢谢观赏,2019-8-23,2)理想气体反应:,132,谢谢观赏,2019-8-23,由上两关系式可看出,在温度不太高时,活化能 Ea 约等于活化焓。,133,谢谢观赏,2019-8-23,134,谢谢观赏,2019-8-23,与 Arrhenius 经验式比较:,135,谢谢观赏,2019-8-23,注意单位:A(T) 用 mol、dm3、s 作单位 (如:mol dm3 s1)时, (c)1n = 1 (moldm3 ) 1n,指前因子A与活化熵 rSm有关,通常(单分子反应除外)生成活化络合物后体系分子数减少,活化熵 rSm 一般小于零。,136,谢谢观赏,2019-8-23,其中 kBT/ h 在数量级上与碰撞理论中的碰撞频率相近,因此可近似地认为: exp (rSm/ R ) ,与概率因子 P 相当。当较大(复杂)分子碰撞形成活化络合物时,体系混乱度下降大,rSm 很负,即 exp (rSm/R ) 很小,相当于概率因子 P 很小 。,137,谢谢观赏,2019-8-23,11.3 单分子反应理论,以上两节用碰撞理论、过渡态理论讨论了双分子基元反应;对于单分子反应(一级基元反应),例如某些分子的分解或异构化: CH3CH2I CH2=CH2 + HI 顺-CHCl=CHCl 反-CHCl=CHCl,138,谢谢观赏,2019-8-23,按定义,单分子反应应该只由一个分子实现的基元反应。一个基态分子的键断裂或异构化,若不是以其它方式 (如辐射) 获得能量,合理的解释是:与其它分子碰撞获得必要的活化能。然而, (两分子) 碰撞活化似乎意味着二级反应动力学,与单分子基元反应观测到的一级反应动力学不符。,139,谢谢观赏,2019-8-23,1922年,林德曼(Lindemann)接受了碰撞理论和过渡态理论的某些观点,提出了单分子反应理论。,140,谢谢观赏,2019-8-23,1. 基本模型:激发(活化)分子,分子 A 通过与其他分子碰撞而获得足够进行分解或异构化的振动能时,叫做激发分子A*。1)激发分子的振动能超过单分子反应的活化能;2)A* 不是活化络合物,仅是有高振动能的 A 分子。,141,谢谢观赏,2019-8-23,反应分子 A 经碰撞激发为激发分子 A*,到 A* 分解(或转化)为产物 P 的过程中,存在时间滞后;这段时间用以能量传递并集中到需破裂的键上去。而在这一滞后过程中,激发分子 A* 将发生:,2. 基本假设,142,谢谢观赏,2019-8-23,1)通过碰撞,A* 释放能量回到 A(消活化),在此过程中,A* 的振动能转化为碰撞分子的动能;2)以过量的振动能打断适当的化学键,引起分解或异构化,转化为产物 P。,143,谢谢观赏,2019-8-23,3. 单分子反应: A P 的具体步骤,反应速率,对活性物质 A*,应用稳态近似法:,144,谢谢观赏,2019-8-23,即单分子反应 A P 没有明确的反应级数。,145,谢谢观赏,2019-8-23,1)高压极限:k1A k2 (一般情况适合)气相反应中,高压下 A 很大,分子碰撞机会多,消活化也快;即步骤 1 和 1 基本上成平衡,单分子步骤 2 是速控步骤(与过渡态理论相符) :,146,谢谢观赏,2019-8-23,(单分子基元反应,一级反应动力学),147,谢谢观赏,2019-8-23,2)低压极限:k2 k1A在低压下,分子碰撞消活机会少,相对地步骤 2 较快,速控步为双分子激发步骤 1 :,(二级反应动力学),148,谢谢观赏,2019-8-23,4. 实验验证:,偶氮甲烷(A)的热分解:,单分子(1 级)反应的实验速率常数 k 定义为: r = k A r 为实验测得的反应速率,由:,149,谢谢观赏,2019-8-23,1)k 的高压极限为,按林德曼单分子理论预言:,150,谢谢观赏,2019-8-23,2)当一组实验的初始压力 P(即A)减小,k 也减少;3)在很低初压下, k = k1A r = k A = k1A2 ( 2 级反应),151,谢谢观赏,2019-8-23,用初始速率法测实验速率常数 k ,从 k 与初始压力 P 的函数关系,证实了林德曼预言,即:随初始压力 P 的下降,实验速率常数 k 发生了降变。,r = k A = k1A2 ( 2 级反应),152,谢谢观赏,2019-8-23,高压下(P 26.7 k Pa = 0.26 atm) k = 3.0103 s 1,为常数(一级反应)随 P 的下降 ( P: 1.3 26.7 kPa),k 也减小;,153,谢谢观赏,2019-8-23,在低压区(P 1.3 kPa = 0.013 atm) k P ,正比于 P 单分子反应为二级反应;,154,谢谢观赏,2019-8-23,实验结果证实了林德曼理论预言的正确性: “单分子反应常压下(例中为 P 0.26 atm) 为一级反应。”,155,谢谢观赏,2019-8-23,5. 讨论:,1)步骤 1、-1 不是基元化学反应(因为不生成新的化合物),而是基元物理过程, 其中只有能量转移。而步骤 2(A* P) 为基元单分子化学反应;,156,谢谢观赏,2019-8-23,2)对于只具有一个键的分子(如 I2),有过量振动能的激发分子 I2* 无需时间将能量集中到该键上,时间滞后为零: k2 k1A 速控步为双分子激发步骤 1。显示二级动力学: r = k1A2,157,谢谢观赏,2019-8-23,3)对于溶液中的单分子反应,不可能得到观察值 k 随浓度的降变。因为溶剂分子的存在使 A* 迅速碰撞失能,k1A k2, 步骤 1、1平衡,速控步为步骤 2,单分子反应呈一级动力学(溶液反应总是相当于气相高浓度体系)。,158,谢谢观赏,2019-8-23,4)除非遇到在低压范围内的气相反应(如上例中的 P 0.26 atm),或者是双原子 分子的单分子反应 见讨论 (2) ;一般情况下,单分子反应(分解,异构化)为一级反应: A P, r = k A,159,谢谢观赏,2019-8-23,6. 单分子反应理论的修正,定性:基本符合实际;定量:往往和实验结果有偏差。目前修正得较好的是 1950 年代提出的 RRKM 理论:,160,谢谢观赏,2019-8-23,具有过量振动能(E* Eb)的激发分子A*先需克服能垒 Eb 转变成过渡态络合物 构型 A,此过程即:过量振动能向某特定化学键集中的过程 滞后时间。,161,谢谢观赏,2019-8-23,RRKM 理论认为,k2 = k2 (E*)E * 越大,则反应速率 r 越大;E * Eb 时,k2 = 0RRKM 理论计算比较复杂,不再详述;与实验数据的比较看,该理论几乎对所有体系都很成功。,162,谢谢观赏,2019-8-23,11.4 三分子反应,三分子(基元)反应非常罕见(空间三个分子同时碰撞)。,163,谢谢观赏,2019-8-23,I + I + M I2 + M形成化学键释放的能量变成双原子分子的振动能,除非第三者 M(M可以是任何原子或分子,如 I、I2、器壁)同时与它们 碰撞并带走这些能量,否则分子新生成的 I2 很可能会在第一次振动中解离回原子状态(因为只有一个键)。,一、两个原子复合成双原子分子,164,谢谢观赏,2019-8-23,特殊情况下, 新生 I2 也可通过光发射去掉多余能量(后讲)。,I + I + M I2 + M,速率方程: r = k I2 M此反应的逆过程表明:I2 是通过双分子步骤分解的。因为该反应没有键断裂,预计活化能: Ea = 0,165,谢谢观赏,2019-8-23,事实上,当温度 T,速率常数 k,即: Ea 0(负值)这是由于温度的升高,增加了三分子碰撞速率及碰撞能量。 对于某一给定的 I + I + M 碰撞,由于温度的升高,引起能量转移给 M 并形成 I2 的几率就减少。,166,谢谢观赏,2019-8-23,原子复合的活化能: A B M AB M Ea = 1 4 kcal/mol,167,谢谢观赏,2019-8-23,二、生成三原子分子的复合反应,O + O2 + M O3 + M该反应也常需有第三者(M)存在,原因是复合产生的过量振动能有可能很快集中于某一个键而使分子解离回去。逆过程表明:O3 通过双分子步骤分解。,168,谢谢观赏,2019-8-23,气相中仅有 NO 与 Cl2、Br2、O2、H2、D2 的反应动力学为三级 ( P723 ) ,有认为是单 个的三分子步骤,也有认为是由两个双分子步骤组成;溶液中三分子(基元)反应也很罕见;关于三分子(基元)反应,尚未有比较满意的理论。,三、其他反应,169,谢谢观赏,2019-8-23,11.5 分子反应动态学,分子反应动态学:从分子水平上来研究反应物粒子的一次碰撞行为中的变化以及基元反应的微观历程,是化学反应动力学的一个新的分支。化学反应动态学又叫微观反应动力学。化学反应动态学建立于1930年代,直到1960 年代,新实验技术以及电子计算机的应用,才使其有很大发展。,170,谢谢观赏,2019-8-23,分子反应动态学研究这样一些问题,1)反应物的相对平动能、分子碰撞角度对反应几率的影响;2)产物的角分布以及它的各种平动、转动和振动状态分布;3)从量子力学、统计力学理论计算某一温度下的反应速率常数。,171,谢谢观赏,2019-8-23