空间直角坐标系课件共19p.ppt
空间直角坐标系,实例,如何确定空中飞行的飞机的位置?,一、空间直角坐标系建立,以单位正方体 的顶点O为原点,分别以射线OA,OC, 的方向 为正方向,以线段OA,OC, 的长为单位长,建立三条数轴:x轴,y轴,z轴,这时我们建立了一个空间直角坐标系,B,O为坐标原点, x轴,y轴,z轴叫坐标轴,通过每两个坐标轴的平面叫坐标平面,一、空间直角坐标系,一般地:,在空间取定一点O,从O出发引三条两两垂直的射线,选定某个长度作为单位长度,(原点),(坐标轴),O,x,y,z,1,1,1,右手系,面,面,面,空间直角坐标系共有八个卦限,2、空间直角坐标系的划分,P1,P2,P3,y,x,z,3、空间中点的坐标,对于空间任意一点P,要求它的坐标,方法一:过P点分别做三个平面垂直于x,y,z轴,平面与三个坐标轴的交点分别为P1、P2、P3,在其相应轴上的坐标依次为x,y,z,那么(x,y,z)就叫做点P的空间直角坐标,简称为坐标,记作P(x,y,z),三个数值叫做P点的x坐标,y坐标,z坐标。,P点坐标为 (x,y,z),P0,x,y,z,方法二:过P点作xy面的垂线,垂足为P0点。点P0在坐标系xOy中的坐标x、y依次是P点的x坐标、y坐标。再过P点作z轴的垂线,垂足P1在z轴上的坐标z就是P点的z坐标。,P点坐标为 (x,y,z),P1,注意:在建立了空间直角坐标系后,空间中任何一点P就与有序实数组(x,y,z)建立了一一对应关系,(x,y,z)就叫做P的空间直角坐标,简称为坐标,记作P(x,y,z)。三个数值x、y、z分别叫做P点的x坐标、y坐标、z坐标。,小提示:坐标轴上的点至少有两个坐标等于0;坐标面上的点至少有一个坐标等于0。,(0,0,0),(x,0,0),(0,y,0),(0,0,z),(x,y,0),(0,y,z),(x,0,z),4、特殊位置的点的坐标,(+,+,+),5、点P在各卦限中x、y、z坐标的符号,(-,+,+),(-,-,+),(+,-,+),(+,+,-),(-,+,-),(-,-,-),(+,-,-),卦限图,卦限图,平面直角坐标,例题:,y,A,B,C,D,E,F,1、在空间直角坐标系中描出下列各点,并说明这些点的位置A(0,1,1) B(0,0,2) C(0,2,0)D(1,0,3) E(2,2,0) F(1,0,0),A1(1,4,0),A(1,4,1),(2,-2,0) B1,B(2,-2,-1),(-1,-3,0) C1,(-1,-3,3) C,2、在空间直角坐标系中作出下列各点(1)、A(1,4,1); (2)、B(2,-2,-1);(3)、C(-1,-3,3);,例1:如图,例2:在空间直角坐标系中标出下列各点: A(0,2,4)B(1,0,5) C(0,2,0)D(1,3,4),结晶体的基本单位称为晶胞,如图是食盐晶胞示意图(可看成是八个棱长为1/2的小正方体堆积成的正方体),其中红色点代表钠原子,黑点代表氯原子,如图:建立空间直角坐标系 后,试写出全部钠原子所在位置的坐标。,例3:,练习1:,点M(x,y,z)是空间直角坐标系Oxyz中的一点,写出满足下列条件的点的坐标,(1)与点M关于x轴对称的点,(2)与点M关于y轴对称的点,(3)与点M关于z轴对称的点,(4)与点M关于原点对称的点,(5)与点M关于xOy平面对称的点,(6)与点M关于xOz平面对称的点,(7)与点M关于yOz平面对称的点,(x,-y,-z),(-x,y,-z),(-x,-y,z),(-x,-y,-z),(x,y,-z),(x,-y,z),(-x,y,z),关于谁对称谁不变,其余都相反,练习2,正四棱锥P-ABCD的底面边长为4,侧棱长为10,建立恰当的空间直角坐标系(1)写出正四棱锥P-ABCD各顶点坐标(2)写出棱PB的中点M的坐标,练一练,在空间直角坐标系中描出下列各点,并指出各点所在的位置:A(0,3,1), B(0,0,5), C(0,3,0),在空间直角坐标系中作出下列各点:(1)、( -1,-4,1 );(2)、 ( -3,3,4 );,小结:,空间直角坐标系,1、空间直角坐标系的建立(三步),2、空间直角坐标系的划分(八个卦限),3、空间中点的坐标(一一对应),4、特殊位置的点的坐标(表格),5、点P在各卦限中x、y、z坐标的符号(表格),谢谢!,供娄浪颓蓝辣袄驹靴锯澜互慌仲写绎衰斡染圾明将呆则孰盆瘸砒腥悉漠堑脊髓灰质炎(讲课2019)脊髓灰质炎(讲课2019),