选修4 4平面直角坐标系中的伸缩变换ppt课件.ppt
第一讲 坐标系,一、平面直角坐标系,1、平面直角坐标系,思考:,以接报中心为原点O,以BA方向为x轴,建立直角坐标系.设A、B、C分别是西、东、北观测点,,设P(x,y)为巨响发生点,由B、C同时听到巨响声,得|PC|=|PB|,故P在BC的垂直平分线PO上,PO的方程为y=x,因A点比B点晚4s听到爆炸声,,则 A(1020,0), B(1020,0), C(0,1020),故|PA| |PB|=3404=1360,解:,由双曲线定义知P点在以A、B为焦点的双曲线 左支上,,答:巨响发生在接报中心的西偏北450距中心 处.,用y=x代入上式,得 ,|PA|PB|,探究,根据几何特点选择适当的直角坐标系的一些规则:,(1)如果图形有对称中心,可以选择对称中心为坐标原点;,(2)如果图形有对称轴,可以选择对称轴为坐标轴;,(3)使图形上的特殊点尽可能地在坐标轴上。,思考:,若我们以信息中心为基点,用角和距离刻画了点的位置,这种方法与用直角坐标刻画点的位置有什么区别和联系?你认为哪种方法更方便?,平面直角坐标系中的伸缩变换,思考:,(1)怎样由正弦曲线y=sinx得到曲线y=sin2x?,x,O,2,y=sinx,y=sin2x,y,问题分析:,在正弦曲线y=sinx上任取一点P(x , y),保持纵坐标不变,将横坐标x缩为原来的 ,就得到正弦曲线y=sin2x.,上述的变换实质上就是一个坐标的压缩变换,即: 设P(x , y)是平面直角坐标系中任意一点,保持 纵坐标不变,将横坐标x缩为原来 ,得到点 P(x, y).坐标对应关系为:,坐标对应关系为:,(2)怎样由正弦曲线 y=sinx得到曲线 y=3sinx? 写出其坐标变换。,问题分析:,设点P(x , y)经变换得到点为P (x, y),在正弦曲线上任取一点P(x , y),保持横坐标x不变,将纵坐标伸长为原来的3倍,就得到曲线y=3sinx。,问题分析:,(3)怎样由正弦曲线y=sinx得到曲线y=3sin2x? 写出其坐标变换。,问题分析:,在正弦曲线y=sinx上任取一点P(x,y),保持纵坐标不变,将横坐标x缩为原来的 ,在此基础上,将纵坐标变为原来的3倍,就得到正弦曲线y=3sin2x.,设点P(x , y)经变换得到点为P (x, y),定义:设P(x,y)是平面直角坐标系中任意一点,在变换,的作用下,点P(x,y)对应P(x,y).称 为平面直角坐标系中的伸缩变换。,注 (1) (2)把图形看成点的运动轨迹,平面图形的伸缩变换可以用坐标伸缩变换得到; (3)在伸缩变换下,平面直角坐标系不变,在同一直角坐标系下进行伸缩变换。,1.在直角坐标系中,求下列方程所对应的图形经过伸缩变换,后的图形。,(1)2x+3y=0; (2)x2+y2=1,练习:,思考:在伸缩 变换 下,椭圆是否可以变成圆?抛物线,双曲线变成什么曲线?,补充练习:,1 求下列点经过伸缩变换,后的点的坐标:,(1,2); (-2,-1).,2 曲线C经过伸缩变换,后的曲线方程是,则曲线C的方程是 .,3 将点(2,3)变成点(3,2)的伸缩变换是( ),7 在同一直角坐标系下,求满足下列图形的伸缩变换:曲线 4x2+9y2=36 变为曲线 x2+y2=1,8 在同一直角坐标系下,经过伸缩变换 后,曲线C变为x29y2 =1,求曲线C的方程,并画出图形。,