欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    轴对称小结与复习ppt课件 人教版.ppt

    • 资源ID:1444756       资源大小:873.50KB        全文页数:43页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    轴对称小结与复习ppt课件 人教版.ppt

    第十二章 轴对称,小结与复习,凉城县宏远中学 高效,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做_对称点_.,一.轴对称图形,1、轴对称图形:,2、轴对称:,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,3、轴对称图形和轴对称的区别与联系,轴对称图形,轴对称,区别,联系,图形,(1)轴对称图形是指( ) 具 有特殊形状的图形, 只对( ) 图形而言;(2)对称轴( ) 只有一条,(1)轴对称是指( )图形 的位置关系,必须涉及 ( )图形;(2)只有( )对称轴.,如果把轴对称图形沿对称轴 分成两部分,那么这两个图形 就关于这条直线成轴对称.,如果把两个成轴对称的图形 拼在一起看成一个整体,那么它就是一个轴对称图形.,一个,一个,不一定,两个,两个,一条,知识回顾:,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,4、轴对称的性质:,关于某直线对称的两个图形是全等形。 如果两个图形关于某条直线对称,那么对称轴是 任何一对对应点所连线段的垂直平分线。 轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。 如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,练习:1、国旗是一个国家的象征,观察下面的国旗,是轴对称图形的是( )A.加拿大、韩国、乌拉圭 B.加拿大、瑞典、澳大利亚C.加拿大、瑞典、瑞士 D.乌拉圭、瑞典、瑞士,加拿大 韩国 澳大利亚 乌拉圭 瑞典 瑞士,C,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,2、小明照镜子的时候,发现T恤上的英文单词在镜子中呈现“ ”的样子,请你判断这个英文单词是( ),(A),(B),(C),(D),A,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,3、ABC与DEF关于直线L成轴对称,则C是多少度?,L,650,750,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,解:,3.,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,1、什么叫线段垂直平分线?,经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。,2、线段垂直平分线有什么性质?,线段垂直平分线上的点与这条线段的两个端点的距离相等 (纯粹性)。,你能画图说明吗?,二.线段的垂直平分线,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,3.逆定理:与一条线段两个端点距离相等的点,在线段的垂直平分线上。(完备性),4.线段垂直平分线的集合定义:,线段垂直平分线可以看作是与线段两个端点距离相等的所有点的集合。,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,三.用坐标表示轴对称小结: 在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.,点(x, y)关于x轴对称的点的坐标为_.点(x, y)关于y轴对称的点的坐标为_.,(x, y),( x, y),轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,1、完成下表.,(-2, -3),(2, 3),(-1,-2),(1, 2),(6, -5),(-6, 5),(0, -1.6),(0,1.6),(-4,0),(4,0),2、已知点P(2a+b,-3a)与点P(8,b+2).若点p与点p关于x轴对称,则a=_ b=_.若点p与点p关于y轴对称,则a=_ b=_.,练 习,2,4,6,-20,(抢答),轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,例:已知ABC的三个顶点的坐标分别为A(-3,5),B(- 4,1),C(-1,3),作出ABC关于y轴对称的图形。,解:点A(-3,5),B(-4,1),C(-1,3),关于y轴对称点的坐标分别为A(3,5), B(4,1),C(1,3).依次连接AB,BC,CA,就得到ABC关于y轴对称的ABC.,A,B,A,C,归纳:(P44)先求出已知图形中的 特殊点(如多边形的顶点或端点)的对应点的坐标,描出并连接这些点,就可 得到这个图形的轴对称图形.,x,y,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,思考:如图,分别作出点P,M,N关于直线x=1的对称点, 你能发现它们坐标之间分别有什么关系吗?,15,点(x, y)关于直线x=1对称的点的坐标为(2-x, y),轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,如图,分别作出ABC关于直线x=1(记为m) 和直线y=-1(记为n)对称的图形,它们的对应点的坐标之间分别有什么关系?,如图:,点(x, y)关于直线x=1对称的点的坐标为(2-x, y)关于直线y=-1对称的点的坐标为(x, -2-y)点(x, y)关于直线x=m对称的点的坐标为(2m-x, y),关于直线y=n对称的点的坐标为(x, 2n-y),Y,m,X,O,A(-4,5),B(-1,3),C(-4,1),x,n,G(-1,-5),轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,类似: 若两点(x1,y1)、(x2,y2)关于直线y=n对称,则 ;,归纳:若两点(x1,y1)、(x2,y2)关于 直线x=m对称,则;,y1=y2,x1=x2,X2=2m-x1,y2=2n-y1,(m= ),(n= ),轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,1.如图,ABC中,边AB、BC的垂直平分线交于点P。(1)求证:PA=PB=PC。(2)点P是否也在边AC的垂直平分线上呢?由此你能得出什么结论?,结论:三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等。,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,4.利用轴对称变换作图:,如图:要在燃气管道L上修建一个泵站,分别向A、B两镇供气,泵站修在管道什么地方,可使所用的输气管道线最短?,A,B,L,P,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,1.有A、B、C三个村庄,现准备要建一所学校,要求学校到三个村庄的距离相等,请你确定学校的位置。,A,B,C,利用轴对称变换作图:,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,1. 如图,A.B两地在一条河的两岸,现要在河上建一座桥MN,桥造在何处才能使从A到B的路径AMNB最短?(假设河的两岸是平行的直线,桥要与河垂直),.,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,作法:1.将点B沿垂直与河岸的方向平移一个河宽到E, 2.连接AE交河对岸与点M, 则点M为建桥的位置,MN为所建的桥。证明:由平移的性质,得 BNEM 且BN=EM, MN=CD, BDCE, BD=CE,所以A.B两地的距:AM+MN+BN=AM+MN+EM=AE+MN,若桥的位置建在CD处,连接AC.CD.DB.CE,则AB两地的距离为:AC+CD+DB=AC+CD+CE=AC+CE+MN,在ACE中,AC+CEAE, AC+CE+MNAE+MN,即AC+CD+DB AM+MN+BN所以桥的位置建在CD处,AB两地的路程最短。,A,B,M,N,E,C,D,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,2. 如图,A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,要在河边建一个抽水站,将河水送到A、B两地,问该站建在河边什么地方,可使所修的渠道最短,试在图中确定该点,作法:作点B关于直线 a 的对称点点C,连接AC交直线a于点D,则点D为建抽水站的位置。证明:在直线 a 上另外任取一点E,连接AE.CE.BE.BD,点B.C关于直线 a 对称,点D.E在直线 a上,DB=DC,EB=EC,AD+DB=AD+DC=AC, AE+EB=AE+EC在ACE中,AE+ECAC,即 AE+ECAD+DB 所以抽水站应建在河边的点D处,,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,某中学七(4)班举行文艺晚会,桌子摆成两直条(如图中的AO,BO),AO桌面上摆满了桔子,OB桌面上摆满了糖果,坐在C处的学生小明先拿桔子再拿糖果,然后回到座位,请你帮助他设计一条行走路线,使其所走的总路程最短?作法:1.作点C关于直线 OA 的 对称点点D, 2. 作点C关于直线 OB 的对称点点E, 3.连接DE分别交直线OA.OB于点M.N,则CM+MN+CN最短,A,O,B,. .,E,D,M,N,G,H,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,证明:在直线OA 上另外任取一点G,连接点D,点C关于直线OA对称, 点G.H在OA上,DG=CG, DM=CM, 同理NC=NE,HC=HE,CM+CN+MN=DM+EN+MN=DE,CG+GH+HC=DG+GH+HE,DG+GH+HEDE(两点之间,线段最短),即CG+GH+HCCM+CN+MN即CM+CN+MN最短,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,4. 如图:C为马厩,D为帐篷,牧马人某一天要从马厩牵出马,先到草地边某一处牧马,再到河边饮马,然后回到帐篷,请你帮他确定这一天的最短路线,作法:1.作点C关于直线 OA 的 对称点点F, 2. 作点D关于直线 OB 的对称点点E, 3.连接EF分别交直线OA.OB于点G.H,则CG+GH+DH最短,F,A,O,B,D , C,E,G,H,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,证明:在直线OA 上另外任取一点G,连接点F,点C关于直线OA对称,点G.M在OA上,GF=GC,FM=CM, 同理HD=HE,ND=NE,CM+MN+ND=FM+MN+NE=FE,CG+GH+HD=FG+GH+HE,在四边形EFGH中,FG+GH+HEFE(两点之间,线段最短),即CG+GH+HDCM+MN+ND即CM+MN+ND最短,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,4、如图,在等腰直角三角形ABC中,ACB=90,点D为BC的中点,DEAB,垂足为点E,过点B作BFAC交DE的延长线于点F,连接CF, (1)求证:AD CF (2)连接AF,试判断ACF的形状,并说明理由。,A,F,B,D,E,F,C,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,5.如图,在RtABC中,C=90,DE是AB的垂直平分线,连接AE,CAE:DAE=1:2,求B的度数。,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,6.如下图ABC中,AC=16cm,DE为AB的垂直平分线, BCE的周长为26cm,求BC的长。,C,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,7.如图:在ABC中,DE是AC的垂直平分线,AC=5厘米,ABD的周长等于13厘米,则ABC的周长是 。,A,B,D,E,C,18厘米,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,三.(等腰三角形)知识点回顾,1.等腰三角形的性质.等腰三角形的两个底角相等。(等边对等角).等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)2、等腰三角形的判定: 如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边),轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,四.(等边三角形)知识点回顾,1.等边三角形的性质: 等边三角形的三个角都相等,并且每一个角都等于600 。2、等边三角形的判定: 三个角都相等的三角形是等边三角形。 有一个角是600的等腰三角形是等边三角形。3.在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,1、如图,在ABC中,AB=AC时,(1)ADBC _= _;_=_(2) AD是中线_; _= _(3) AD是角平分线_ _;_=_,BAD,CAD,BD,CD,AD,BC,BAD,CAD,AD,BC,BD,CD,练习:,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,2、“有一个等腰三角形的两条边长分别是4cm和8cm,则周长为,20cm,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,3、若等腰三角形的一个角为400,则另外两个角的度数为,700,700 或 400,1000,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,4、已知,如图: AB=AC AD=DC=BC则A=,A,B,C,D,360,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,5、已知,如图AB=AB=CD AD=BD则BAC=,A,B,C,D,1080,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,1、哪个在镜子中的像跟原来的一样?(直线表示进镜子、垂直放置在纸条前),口 木 E 目 人 晶 S N 中 田,课堂练习:, ,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,6、如图,在ABC中,AB=AC=16cm,AB的垂直平分线交AC于D,如果BC=10cm,那么BCD的周长是_cm.,A,B,C,D,E,26cm,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,7、如图,P、Q是ABC边上的两点,BP=PQ=QC=AP=AQ,求BAC的度数。,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,6、等腰三角形的一个角为100,底角为_,7、等腰三角形的周长为16cm,腰比底长2cm,则腰长为_,8、等腰三角形的一边长为3cm,另一边长为8cm,则它的周长是 。,9、如下图ABC中,AC=16cm,DE为AB的垂直平分线, BCE的周长为26cm,求BC的长。,C,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,作业布置:,已知,如图:ABC中 AB=AC E为AC延长线上的一点且CE=BD DE交BC于F 求证:DF=EF,A,B,C,D,E,F,(提示:过D作DGAE交BC于G证DFGEFC即可),G,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,轴对称小结与复习ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,教学目标:1能够熟练运用配方法确定二次函数图象的对称轴和顶点坐标2体会建立二次函数对称轴和顶点坐标公式的必要性3能够利用二次函数的对称轴和顶点坐标公式解决问题.教学重、难点:重点:运用配方法或二次函数图象的对称轴和顶点坐标公式解决实际问题难点:把数学问题与实际问题相联系的过程课前准备:多媒体课件、检测小卷(学生用)教学过程:一、创设情境,导入新课 活动内容1:知识回顾 说出下列二次函数图象的开口方向、对称轴和顶点坐标: 处理方式:让学生口答二次函数图象的开口方向、对称轴和顶点坐标设计意图:通过此题组,回顾如何根据二次函数的顶点式,确定二次函数图象的开口方向、对称轴和顶点坐标.为下步确定一般式的二次函数图象的性质做准备.活动内容2:导入新课我们发现,根据二次函数的顶点式很容易确定二次函数图象的开口方向、对称轴和顶点坐标如果给你一个一般形式的二次函数 ,你还能确定其图象的开口方向、对称轴和顶点坐标吗?如何确定?【教师板书课题:2.2二次函数的图象与性质(4)】处理方式:给学生抛出问题,让学生联想到化成顶点式解决此题.设计意图:学生有了从顶点式确定二次函数图象性质的经验,教师直接抛出一个一般式的二次函数,并提出问题,在对比中激发学生的探究欲望二、探究学习,获取新知活动内容1:用配方法确定二次函数y=ax2+bx+c图象的对称轴和顶点坐标例1 求二次函数 图象的对称轴和顶点坐标.处理方式:学生对比一般式和顶点式的形式特点,将一般式通过配方化成顶点式,从而确定二次函数图象的对称轴、顶点坐标.一生板演后,师生共同规范解题过程.当然,还有部分同学对配方的过程有些淡忘,可以引导学生小组交流、合作,完成对配方法过程的理解.学生板演,教师规范:,

    注意事项

    本文(轴对称小结与复习ppt课件 人教版.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开