脉冲星观测技术与搜寻ppt课件.ppt
1,脉冲星观测技术和搜寻,2,思考题 / 提纲,脉冲星信号发射时的特征是什么?脉冲星信号传播过程中有那些改变?脉冲星观测可以用什么样的望远镜?脉冲星观测和搜寻的关键技术点是什么?脉冲星搜寻中选择效应过去脉冲星发现和搜寻结果脉冲双星系统的搜寻特殊目标的脉冲星搜寻将来脉冲星搜寻的主要任务,3,MilkyWay in Sky,0329,中子星半径仅10公里,有极强的磁场108-14 G,极高的密度1014g/cm3. 它们旋转,产生脉冲,成为 脉冲星!,4,超新星爆炸后留下:超新星遗迹,和中子星或黑洞!,中子星半径仅10公里,有极强的磁场108-14 G,极高的密度1014g/cm3. 它们旋转,产生脉冲,成为脉冲星!,电磁波谱,光学波长:几千埃(10-10m) 电波: = 1 m = 300 MHz = 1 mm = 300 GHz,1054 AD爆炸,中国史书记录完整,年龄可靠. 脉冲星周期33毫秒. 该脉冲星从射电到光学到高能,全波段辐射,蟹状星云及其脉冲星,(Abdo et al. 2010),7,银河系 = 恒星 + 星际介质,+ 中子星 + 黑洞 + 暗物质,Crab从射电到光学到X和,全波段辐射!,讨论几个问题:1. 不同波段周期及变化是否相同?2. 不同波段的脉冲相位一样?3. 不同波段的脉冲现状是否相同?4. 那些波段受星际介质影响?,8,波形随频率变化: 辐射频率与辐射高度有关,Thorsett 1991Phillips & Wolsczcan (1992),宽度一般随频率减少. 低频在高处发出,脉冲宽度,观测频率,9,星际介质的色散:,介质中电磁波传播的相速度为 vp=c/n;但群速度为,考虑电磁波 在稀薄气体中传播时,电子被电磁波电 场加速运动的方程为,n个电子一起引起的偶极偏振电场:,介电常数为,共振频率为=0,介质对电磁波的反射系数为,电磁波的传播延时为,注意:与光速的差取决于2 仅仅低频电磁波收星际介质影响!,10,方法:将频段分为多个小频带探测每个小频带的脉冲,然后相加。,射电波段观测:色散要消除!,11,地球大气窗口,射电窗口,大气吸收率,12,Interstellar medium:Clouds & large-scale structure?,Chandra,XMM,HST,VLT,观测脉冲星的望远镜地面:射电+光学空间:红外+光学+ 紫外+X射线+射线,13,观测脉冲星的基本要求,因为脉冲星信号微弱,因此望远镜必须足够大,并且积分时间足够长,才能够收集足够多的光子!因为要观测的是脉冲,必须有足够的时间分辨率采样。观测毫秒脉冲星,要微秒分辨!因为有各种干扰和辐射背景,观测必须消除它们的影响!发现一个脉冲星,必须有精确的位置,并与周边的目标明确区别!,14,几种望远镜和脉冲星观测成果举例,射电望远镜红外、光学、紫外望远镜X射线望远镜射线望远镜,15,德国100米,美国104米,美国300米Arecibo,我国500米口径球面射电望远镜FAST:2007批准投资6亿。2009开建,5年完成,澳大利亚64米,世界上的大射电望远镜,16,射电望远镜的组成框图,射电望远镜-引论,天线控制方位俯仰,抛物面天线,副反射面,天线,馈源 和前端接收机,数字后端,观测监控数据显示,观测者,17,不同形式的抛物面天线基本光路,Prime focus,Cassegrain,Off-axis Cassegrain,Naysmith,Beam waveguide,Offset Cassegrain,=receiver,Parkes,发现了已知2267颗脉冲星的 2/3 ,包括双脉冲星,RRAT!首次测偏振,确定辐射来自磁极,RVM!,18,不同形式的抛物面天线基本光路,Prime focus,Cassegrain,Off-axis Cassegrain,Naysmith,Beam waveguide,Offset Cassegrain,=receiver,19,Cassegrain和Gregorian光学系统,20,Cassegrain(卡塞格林)和Gregorian (格里高利)望远镜,优势:照明溢出少、照明效率高、馈源仓空间得到拓展;劣势:较窄的照明角度导致馈源尺寸大、长度长。,德国Effelsberg100米射电望远镜,21,不同形式的抛物面天线基本光路,Prime focus,Cassegrain,Off-axis Cassegrain,Naysmith,Beam waveguide,Offset Cassegrain,=receiver,发现质量最大的脉冲星!发现周期最短的脉冲星!,22,天线装配方式和指向与跟踪,赤道式:无盲区、波束不旋转、跟踪精度高;重力形变大、造价高地平式:造价低、重力形变小;天顶盲区、波束旋转,英国Jodrell Bank76米射电望远镜,长期Timing了大量脉冲星。首次发现球状星团脉冲星。,23,美国Arecibo 300米,发现第一颗脉冲双星-诺贝尔奖!发现第一颗毫秒脉冲星!,24,Arecibo光路,25,国际新低频望远镜LOFAR的天线 LOw Frequency Array荷兰主导,LBA:10MHz80MHz,HBA:120MHz240MHz,无可匹敌的脉冲星低频观测能力!,美国LWA项目,26,荷兰Westerbork Synthesis Radio Telescope(WSRT),14 面 25m 天线 (4 个可移动) 东西向排列最长基线2.7km300 MHz 9 GHz,27,印度Giant Metrewave Radio Telescope,150 1420 MHz,3045米 等效246米over 25 km!,28,光学、红外、紫外观测脉冲星,目前仅仅几颗年轻脉冲星Crab脉冲星光脉冲探测和定位Crab脉冲星光脉冲偏振HST的脉冲图像HST测脉冲星自行和激波!2012年拍伴星光谱定最大质量脉冲星!,HST,连续高速摄影是必须的!,29,光学、红外、紫外观测脉冲星,仅仅几颗年轻脉冲星Crab脉冲星光脉冲探测和定位Crab脉冲星光脉冲偏振HST的脉冲图像HST测脉冲星自行和激波!2012年拍伴星光谱定最大质量脉冲星!,HST,X射线望远镜的脉冲星观测,/导航?,XMM-Newton,Chandra,25 Pulsars,X-ray Binary,12 Magnetars,RXTE,SWIFT,0.1-10 keV,7 CCOs in SNRs,注意:1.每秒钟每平方厘米有几个X射线光子?=请查找答案!2. 每个光子的到达时间要改正卫星绕地球和地球绕太阳的几何轨道效应!,射线望远镜见教材 31页射线望远镜列表 表3.2,HESS 2,MAGIC,地面Cerenkov望远镜,VERITAS: Next-Generation TeV Observatory,之前感觉美国能够Compton 卫星天文台的EGRET很牛!测到7颗脉冲星,射线望远镜Fermi-预想不到的牛,技术关键点,卫星记录的每个光子到达时间折算到太阳系质心,必须扣除所有运动项!,难的是几年内把每个光子时间精度弄到亚微秒量级,脉冲星周期:2.5ms 轨道周期: 93分钟总观测时间: 1437天!搜寻办法: 盲搜!,36,以射电为例!,脉冲星搜寻的基本问题,37,射电望远镜的组成框图,射电望远镜-引论,天线控制方位俯仰,抛物面天线,副反射面,天线,馈源 和前端接收机,数字后端,观测监控数据显示,观测者,38,低噪声放大器,滤波器,本地振荡器,可调滤波器,1570 MHz,1420 MHz,可调本地振荡器,150 MHz,模数转换器ADC,计算机,+,+,150 MHz,射电望远镜:超外差接收,天线馈源,天体信号 1420MHz,混频器,1 MHz,混频器,中频信号,滤波器,滤波器,39,脉冲星的真实数据记录,傅里叶变换,分析周期,脉冲比较窄,谐波能量要联合检测,41,脉冲信号波包因为星际介质而色散脉冲星在各个频率上同时辐射信号,但星际介质电离气体使低频信号延迟一些到达地球.,脉冲星信号的特点, 消色散技术 (也是排除干扰的方法),脉冲星信号的周期和轮廓非常稳定 单个脉冲变化但平均脉冲非常稳定,周期特别精确. 用FFT找周期!,42,方法:将频段分为多个小频带探测每个小频带的脉冲,然后相加。,色散要消除!,43,低噪声放大器,滤波器,本地振荡器,可调滤波器,1570 MHz,1420 MHz,可调本地振荡器,151 MHz,计算机,+,+,150 MHz,射电望远镜:超外差接收,天线馈源,天体信号 1420MHz,混频器,中频信号,滤波器,150 MHz,149 MHz,44,标准的脉冲星搜寻方法,from Lorimer & Kramer,45,以射电为例!,脉冲星搜寻的基本问题,1. 灵敏度:望远镜增益和接收机噪声、天空背景2. 时间分辨率:记录数据的快慢:采样率3. 色散-射电波段:不可忽略的星际介质效应实际上还有散射效应的麻烦4.干扰,硬盘要能够存储!数据总线速度匹配才行!目前还是受限!,46,射电望远镜的灵敏度,用最小可探测的射电源流量来表示。最小可检流量Smin由系统噪声温度Tsys决定: 这里,Tsys是整个射电望远镜系统的噪声温度,要折算到接收机之前。A是望远镜的孔径面积,A是天线效率,T是观测时间,B是信号接收带宽,nP是偏振通道数。,问题:如何提高望远镜的灵敏度?(即降低Fmin)提高灵敏度方法:1. 提高天线效率;2. 增大反射面口径;3. 降低系统噪声;4. 增加观测时间;5. 增大接收机带宽;6. 双偏振通道观测,G = 4p A0 / l2 = 4p / WA,脉冲星探测的信噪比(04-24),脉冲周期为P,但仅在w的时间内有信号,脉冲的信噪比为:,LAMBDA / Haslam et al. (1982) / ATA / CGPS / Fomalont / Junkes / Hughes / Duncan,Radio Sky at 408 MHz,The GBT350 Survey,已知脉冲星在银河系内的分布,50,Radio Sky at 1.4 GHz,by W. Reich,脉冲星探测的灵敏度曲线,对脉冲星周期敏感!对脉冲宽度敏感 假设5%!每一通带DM导致的脉冲致宽敏感双偏振接收!Tsys尽量小G尽量大t 尽量长采样时间:P/20,52,星际介质的脉冲散射特征,DM = ds neDispersion MeasureEM = ds ne2Emission MeasureRM = ds neB| Rotation MeasureSM = ds Cn2 Scattering Measure Spectrum = Cn2 q-, q = wavenumber (temporal spectrum not well constrained, relevant velocities 10 km/s)= 11/3 (Kolmogorov value) Scales 1000 km to pc,53,0.43 1.18 1.48 2.4 GHz,Mitra & Ramachandran (2001):,星际介质散射和脉冲轮廓变宽,Bhat et al. 2004,注意与-4有关!,54,脉冲星搜寻中选择效应,大DM的脉冲星受限Channel内DM延迟没有清除短周期的脉冲星受限 (tsamp)长周期脉冲星受限!散射使大DM脉冲星轮廓延展 (t v-4)宽的脉冲星不容易探测大望远镜:beam小=天区范围限制!双星轨道使脉冲周期变化,不能探测!,Parkes Multibeam 巡天灵敏度曲线,55,真实数据的FFT,FFT结果含有明显的因为系统限制而出现的红化噪声,必须归一化!,56,干扰问题,干扰不可避免!如何消除影响?,57,Eatough et al. (2009, MN),58,干扰清除后的效果,脉冲星数据搜寻输出图: 实例-1,61,脉冲星数据搜寻输出图: 实例-2,62,强的单个脉冲和RRAT搜寻,主要是DM考虑 可以用于找RRAT 可以用于找河外单个脉冲Lorimer et al. (2007, Scien.),63,思考题 / 提纲,脉冲星信号发射时的特征是什么?脉冲星信号传播过程中有那些改变?脉冲星观测可以用什么样的望远镜?脉冲星观测和搜寻的关键技术点是什么?脉冲星搜寻中选择效应过去脉冲星发现和搜寻结果脉冲双星系统的搜寻特殊目标的脉冲星搜寻将来脉冲星搜寻的主要任务,64,脉冲星的发现 完全偶然,细心的女学生!,Faster Reaction!,65,过去的一些脉冲星巡天和结果,66,课本44页,67,Parkes Multibeam Pulsar Survey,Principal papers:,Along Galactic plane: -100o 800 pulsars discovered High-latitude surveys: 100 new pulsars (12 MPS),I: Manchester et al., MNRAS, 328, 17 (2001)System and survey description, 100 pulsars II: Morris et al., MNRAS, 335, 275 (2002)120 pulsars, preliminary population statisticsIII: Kramer et al., MNRAS, 342, 1299 (2003)200 pulsars, young pulsars and -ray sourcesIV: Hobbs et al., MNRAS, 352, 1439 (2004)180 pulsars, 281 previously known pulsarsV: Faulkner et al., MNRAS, 355, 147 (2004)Reprocessing methods, 17 binary/MSPsVI: Lorimer et al., MNRAS, 372, 777 (2006) 142 pulsars, Galactic population and evolution,68,脉冲星发现的数目与年代,2000,2010,Parkes 巡天的天区覆盖,Parkes Multibeam Pulsar Survey (completed)Parkes High Latitude Pulsar Survey (completed)Perseus Arm Pulsar Survey (in progress)Parkes Methanol Pulsar Survey (just started)Globular Clusters Pulsars Search (in progress),Parkes 64m: 2010 -2013 July.30th,I - VII,Parkes 64m: 2013 July.30th,Effelsberg 100m: 2013 Aug.5th,Effelsberg 100m: 2013 Aug.5th,74,Parkes multibeam pulsar surveys,75,脉冲星发现的数目与年代,76,Pulsars: Significant Discoveries,The first radio pulsar, PSR 1919+21 was discovered in 1967 (Nature 217:709-713, 1968). The first binary pulsar, PSR 1913+16, whose orbit is decaying at the exact rate predicted due to the emission of gravitational radiation by general relativity The first millisecond pulsar, PSR B1937+21 The first extrasolar planets to be discovered orbit the pulsar PSR B1257+12 The first double pulsar binary system, PSR J07373039 The most massive pulsars: 2M (PSR J1614-2230 & J0348+0432)The magnetar SGR 1806-20 produced the largest burst of energy in the Galaxy ever experimentally recorded on 27 December 2004 PSR B1931+24 . appears as a normal pulsar for about a week and then switches off for about one month before emitting pulses again. PSR J1748-2446ad, at 716 Hz, the pulsar with the highest rotation speed. PSR J0108-1431, the closest pulsar to the Earth at a distance of about 86 parsecs. The brightest millisecond pulsar, PSR J0437-4715 The first X-ray pulsar, Cen X-3 The first accreting millisecond X-ray pulsar, SAX J1808.4-3658,The GBT350 Survey,已知脉冲星在银河系内的分布,第一颗河外脉冲星?27 PSRs in LMC & SMC,78,银河与LMC之间 HI 的桥,HI in LMC,Magellanic Stream160 kpc across,LMC,79,银河与LMC之间 HI 的桥,HI in LMC,Magellanic Stream160 kpc across,LMC,Arecibo Multibeam SurveysPulsarsHIGalactic RMs,82,北半球的可观测天区,83,银河系 = 恒星 + 星际介质,+ 中子星 + 黑洞 + 暗物质,Arecibo的ALFA脉冲星巡天,Arecibo telescope + 7-beam ALFA receiverFrequency: 1.23-1.53 GHz; BW= 300 MHz; 1024 Channel Integration time: 67s (precursor), 135s/278s (ongoing)2.5 to 5 times further than Parkes MBBeam size: 204” x 232”; outer beam: 329”x 384”Central beam gain: 11 K/Jy; outer beam gain: 8 K/Jy Tsys: about 25 K at 1400 MHzDeep Galactic plane survey: |b| 5 deg, 32 l 80 degMedium latitude surveys: 5 |b| 25 degMillisecond pulsars (z scale height 0.5 kpc) High-velocity pulsars (50% escape) (scale height = ?) NS-NS binaries (typical z 5 kpc) NS-BH binaries (typical z few kpc ?),Nice et al. 35 pulsars,Simulated 1000 pulsars to be found in ALFA survey,Known Pulsars discovered with Parkes, Arecibo & GBT,Nice et al.35 pulsars,detect MSPs at DMs 16 times larger than PMBable to detect sub-millisecond pulsars (if they exist).better sensitivity to binary pulsars with short orbital periodsno complex and CPU-intensive algorithms are needed to detect fast binary systemsdiscovery of PSR J1906+0746:no curvature is seen. Pulsar is faint.,Arecibo的ALFA脉冲星巡天,Discovery of PSR J1906+0746,PMB data: pulsar was detected only after Arecibo! Acceleration prevented the earlydetection of this system!,89,首例双星中的脉冲星,观测与理论预言完全一致!Russell Hulse Joseph Taylor1993, 2nd Nobel Prize for pulsar!,PSR B1913+16:1975年用 Arecibo发现! 它是一个双星系统, 相对论预言,因为发出引力波 (是已知电磁波外的新辐射形式:Gravitational Wave),轨道进动,轨道缩小(每天1cm!)。 最后会并合!,90,双脉冲星的发现,PSR J0737-3039AB:Pb=2.4 h e=0.08Merging in 85Myr! 最强的相对论效应系统!,22.7 ms1.7 x 10-18200 Myr6 x 109 G1,080 km5 x 103 G6000 x 1030 erg/s301 km s-1,A,2.77 s0.88 x 10-1550 Myr1.6 x 1012 G132,000 km0.7 G1.6 x 1030 erg/s323 km s-1,PPageBsurfRLCBLCdE/dtVorb,B,.,基本参数,.,观测到A星粒子调制B星信号 观测到B星磁层堰塞A信号传播 引力理论有更精确地测时,(Burgay et al. 2003, Lyne et al. 2004),91,MA = 1.3381 0.0007 MsunMB = 1.2489 0.0007 Msun,(Kramer et al. 2006 Science, 314, 97,),爱因斯坦99.95%地准确!,+16 -39,双脉冲星系统更强的相对论轨道,给与更快更好的引力理论检验,GR value Measured value Improves as Periast. adv. (deg/yr) - 16.8995 0.0007 T1.5 Grav. Redshift (ms) 0.3842 0.386 0.003 T1.5Pb Orbit decay -1.248 x 10-12 (-1.252 0.017) x 10-12 T2.5r Shapiro range (s) 6.15 6.2 0.3 T0.5s Shapiro sin i 0.99987 0.99974 T0.5,.,.,92,几个双星轨道的比较,2M,93,脉冲星搜寻中选择效应,大DM的脉冲星受限Channel内DM延迟没有清除短周期的脉冲星受限 (tsamp)长周期脉冲星受限!散射使大DM脉冲星轮廓延展 (t v-4)宽的脉冲星不容易探测大望远镜:beam小=天区范围限制!双星轨道使脉冲周期变化,不能探测!,Parkes Multibeam 巡天灵敏度曲线,94,轨道周期Porb调制在脉冲星的精确周期上,使脉冲星FFT周期搜寻出现麻烦!分三种情况考虑:1)长轨道周期:观测数据的时间跨度 TPorb - 直接搜寻!暂时不考虑轨道周期2)中等轨道周期: T Porb - 做DFT但要搜寻脉冲星频率的旁瓣,双星系统和加速搜寻,95,轨道频率的调制和脉冲星的搜寻,Ransom et al. (2003, ApJ 589, 911),没有轨道调制的FFT,实际观测数据分析:8小时对47Tuc 的观测。PSRJ0023-7203J(p2ms,f 476Hz) 被一个2.9小时轨道周期的调制!实际观测数据分析:P, DM, Porb, Phi,96,Feasible: Search only in acceleration space assuming that acceleration is constant during observations,1. Re-sampling of time series (coherent search, expensive)2. Stack search of FFT spectra (incoherent search, cheaper),Success of recovery depending on Pb, a and T!,轨道频率的调制和脉冲星的搜寻,大量脉冲星搜寻计算的分散进行!EINSTAINHOME:云计算、并行计算,一些球状星团的双星脉冲星,NGC 6266 NGC 6397 NGC6544 NGC 6752PSR J1701-30 PSR J1740-53 PSR J1807-24 PSR J1910-59,P 5.24 ms 3.65 ms 3.06 ms 3.27 ms Pb 3.81 d 1.35 d (eclipse) 0.071 d (1.7 h) 0.86 d Mc 0.19 Msun 0.18 Msun 0.009 Msun (10 MJup) 0.19 Msun d 6.7 kpc 2.2 kpc 2.5 kpc 3.9 kpc,DAmico et al. (2001),Proper Motions1st gas detection in GC,Using Parkes telescope33 MSPs detectedRecent discoveries using acceleration searchMost in binary systemsShortest orbit of any radio pulsar, i.e. 96minAccurate positions,47 Tucanae,球状星团的脉冲星搜寻,11 MSPs discovered 1991-1995. All but two single (non-binary) 12 more PSRs discovered using multibeam receiver. All but two binary.,101,PSR B,PSR D,PSR E,PSR C,PSR A,NGC 6752: Two pulsars at unusual positions and moving very fast!,脉冲星在星团中高速运动:探测到星团中心的黑洞? .No!,Terzan 5: Massive cluster 8.5 2 kpc(l,b) = (3.8, 1.7): 33 pulsars, mostly MSPsRansom et al. 2005, Science, 307, 892PSR J1748-2446ad fastest spin (716 Hz) Hessels et al. 2006,Nature,Gain (i.e. area):3 times larger than Parkes “Clean” 600 MHz band at low S-band (1950 Mhz) Reduces DM-smearing (-3) N-star 1.7 M PSR J1748-2446ad - fastest known pulsar! P = 1.3959 ms, f0= 716.3 Hz, S2000 80 Jy circular orbit, Pb= 1.09 d, mc 0.14 M Eclipsed for 40% of orbit,球状星团的脉冲星搜寻,27 new MSPs in Terzan5 = 30 in total! Ransom et al., 2005, Science, 307, 892,Fastest Millisecond Pulsars:Are many of the fastest-spinning pulsars hidden?,5 of the 10 fastest-spinning pulsars show eclipses.5 of the 10 fastest-spinning pulsars are found in Terzan 5,Are the frequencies limited by gravitational radiation?,327 MHz VLA image,Detecting pulsars in Sgr A* is difficult because of the intense scattering screen in front of Sgr A*.Multipath differential arrival times d 2000 -4 secSolution: high sensitivity at high frequency,Sgr A* = 3106 BH with a surrounding star cluster with 108 stars. Many of these are neutron stars.,银河系中心的脉冲星搜寻:到目前为止,均以失败告终!Why?,Sampling of pulsar L-P distribution with different instruments,detectable,EVLA can sample a good fraction of the luminosity functionA southern-hemisphere Arecibo-like aperture samples even moreSKA may be necessary to realize timing precision required for physics payoff (black hole spin, GR tests),银河系中心附近的脉冲星搜寻,110,超新星遗迹:深“曝光”,在SNR G0.9+0.1 中发现J17472809:DM=1133, P=52ms, S=40uJy; Edot=4.3*1037erg s; t=5.3kyr! Dist=813kpc!只有用GBT at 2GHz测到!Parkes 1.4GHz:Scattering =55ms!,(Camilo et al. 2009, ApJ 700, L23),Magnetar: Radio Pulsar!,Neutron stars with periods between 5-12 sec Period derivatives 10-10 10-13 s/s magnetic field of the order of 1015 G! Radio-quiet but bursting X-ray/gamma-ray sources Powered by energy stored in magnetic field,XTE J1810-197: A radio emitting magnetar (Camilo et al. 2006):,- Identified as AXP during outburst 2003 P = 5.54 s, dP/dt = 10-11, B2.4 x 1014 G; T 7600 yr First as radio source in VLA continuum Pulsed emission by Parkes Very strong, flat spectrum source Complicated, changing profile: Main and interpulse component,XTE J1810-197: A radio emitting magnetar,Profile and polarization are changing with time,Kramer et al. (2007),113,脉冲星发现的数目与年代,SKA pulsar survey: (600s per beam) 104 PSR,Millisecond Pulsars,Relativistic Binaries,Today,Today,Future,SKA,SKA,Future,only 6!,FAST:最重要的研究课题:脉冲星宇宙中氢原子与恒星星系的形成其他(如:寻找地外文明!),球反射面:口径500m 球冠张角: 110120 有效照明口径:300m 天空覆盖:天顶角 40 工作频率: 70MHz3GHz 灵敏度:2000 /K 多波束:19 跟踪精度:8,116,FAST: sky coverage and pulsar survey,Why more pulsars?,Extreme Pulsars: P 5 sec Porb 1013G (magnetars?) V 1000 km s-1,New instruments (AO, GBT, FAST, SKA) can dramatically increase the volume searched (galactic & extragalactic),Tests of theories of gravity: NS-NS & NS-BHMore MSP for Gravitational wave detectorsMore extreme PSRs for Extreme matter physics Relativistic plasma physics Magnetospheres + Radiation mechanismsProbes of turbulent and magnetized ISM (& IGM)End states of stellar evolutionMassive stars neutron stars or black holes,118,结束语,人们不断地改进技术,发现了大量脉冲星脉冲星、脉冲双星、毫秒脉冲星、双脉冲星、间歇辐射脉冲星、强磁脉冲星:惊喜连连!银河系还有大量的脉冲星等待我们探寻!这些脉冲星中有非常好的珍品待发现:更强引力的中子星黑洞系统、亚毫秒脉冲星、等等大量脉冲星为探测引力波和银河系星际介质、以至于星系际介质提供不可或缺的探针欢迎你去追寻取得诺贝尔奖,