欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    概率3 3二维随机变量函数分布ppt课件.ppt

    • 资源ID:1424697       资源大小:638KB        全文页数:16页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    概率3 3二维随机变量函数分布ppt课件.ppt

    随机变量相互独立的定义 课堂练习小结 布置作业,第四节 相互独立的随机变量,两事件 A , B 独立的定义是:若P(AB)=P(A)P(B)则称事件 A , B 独立 .,一、随机变量相互独立的定义,它表明,两个r.v相互独立时,它们的联合分布函数等于两个边缘分布函数的乘积 .,几乎处处成立,则称 X 和 Y 相互独立 .,对任意的 x, y, 有,若 (X,Y)是连续型r.v ,则上述独立性的定义等价于:,分别是X的边缘密度和Y 的边缘密度 .,若 (X,Y)是离散型 r.v ,则上述独立性的定义等价于:,则称 X 和Y 相互独立.,对(X,Y)的所有可能取值(xi, yj),有,二、例题,解,0 x1,0y1,由于存在面积不为0的区域,,故 X 和 Y 不独立 .,例2 甲乙两人约定中午12时30分在某地会面.如果甲来到的时间在12:15到12:45之间是均匀分布. 乙独立地到达,而且到达时间在12:00到13:00之间是均匀分布. 试求先到的人等待另一人到达的时间不超过5分钟的概率. 又甲先到的概率是多少?,类似的问题如:,甲、乙两船同日欲靠同一码头,设两船各自独立地到达,并且每艘船在一昼夜间到达是等可能的 . 若甲船需停泊1小时,乙船需停泊2小时,而该码头只能停泊一艘船,试求其中一艘船要等待码头空出的概率.,在某一分钟的任何时刻,信号进入收音机是等可能的. 若收到两个互相独立的这种信号的时间间隔小于0.5秒,则信号将产生互相干扰. 求发生两信号互相干扰的概率.,盒内有 个白球 , 个黑球,有放回地摸球,例3,两次.,设,第1次摸到白球,第1次摸到黑球,第2次摸到白球,第2次摸到黑球,试求,(1) 的联合分布律及边缘分布律;,(2) 判断 的相互独立性;,(3) 若改为无放回摸球,解上述两个问题.,(1) 的联合分布律及边缘分布律,解,如下表所示 :,(2),由上表可知,故 的相互独立.,(3) 的联合分布律及边缘分布律如下,表所示 :,故 不是相互独立.,由上表知 :,可见,这一讲,我们由两个事件相互独立的概念引入两个随机变量相互独立的概念. 给出了各种情况下随机变量相互独立的条件,希望同学们牢固掌握 .,四、小结,五、布置作业,习题三 6, 7, 11,

    注意事项

    本文(概率3 3二维随机变量函数分布ppt课件.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开