卡尔曼滤波算法(含详细推导)ppt课件.ppt
卡尔曼滤波算法及推导,1、kalman滤波问题,考虑一离散时间的动态系统,它由描述状态向量的过程方程和描述观测向量的观测方程共同表示。(1)、过程方程 式中,M 1向量x(n)表示系统在离散时间n的状态向量,它是不可观测的;M M矩阵F(n+1,n)成为状态转移矩阵,描述动态系统在时间n的状态到n+1的状态之间的转移,应为已知。而M 1向量 为过程噪声向量,它描述状态转移中间的加性噪声或误差。,1、kalman滤波问题,(1)、观测方程 式中,N 1向量y(n)表示动态系统在时间n的观测向量; N M矩阵C(n)称为观测矩阵(描述状态经过其作用,变成可预测的),要求也是已知的;v2(n)表示观测噪声向量,其维数与观测向量的相同。过程方程也称为状态方程,为了分析的方便,通常假定过程噪声v1(n)和观测噪声v2(n)均为零均值的白噪声过程,它们的相关矩阵分别为:,1、kalman滤波问题,1、kalman滤波问题,还假设状态的初始值x(0)与v1(n) 、 v2(n),n 0均不相关,并且噪声向量v1(n)与v2(n)也不相关,既有:,2、新息过程,考虑一步预测问题,给定观测值y(1), .,y(n-1),求观测向量y(n)的最小二乘估计,记作 (1)、新息过程的性质 y(n)的新息过程定义为:式中,N 1向量 表示观测数据y(n)的新的信息,简称新息。,2、新息过程,新息 具有以下性质:性质1 n时刻的新息 与所有过去的观测数据y(1), .,y(n-1)正交,即:性质2 新息过程由彼此正交的随机向量序列 组成,即有,2、新息过程,性质3 表示观测数据的随机向量序列y(1) ,y(n)与表示新息过程的随机向量序列a(1),a(n) 一一对应 ,即以上性质表明:n时刻的新息a(n)是一个与n上课之前的观测数据y(1), .,y(n-1)不相关,并具有白噪声性质的随机过程,但它却能够提供有关y(n)的新息,这就上信息的内在物理含义。,2、新息过程,(2)、新息过程的计算 下面分析新息过程的相关矩阵 在kalman滤波中,并不直接估计观测数据向量的进一步预测 ,而是先计算状态向量的一步预测然后再用到下式得到 :,2、新息过程,将上式代入新息过程的定义式(6),可得到:这就是新息过程的实际计算公式,条件是:一步预测的状态向量估计 业已求出。定义向量的一步预测误差:,2、新息过程,将此式代入式(13),则有在新息过程的相关矩阵定义式(10)中代入式(14),并注意到观测矩阵C(n)是一已知的确定矩阵,故有式中Q2(n)是观测噪声v2(n)的相关矩阵,而表示(一步)预测状态误差的相关矩阵,3、kalman滤波算法,由上一节的的新息过程的相关知识和信息后,即可转入kalman滤波算法的核心问题的讨论:如何利用新息过程估计状态向量的预测?最自然的方法是用新息过程序列a(1),a(n)的线性组合直接构造状态向量的一布预测:式中W1(k)表示与一步预测项对应的权矩阵,且k为离散时间。现在的问题是如何确定这个权矩阵?(1)、状态向量的一布预测 根据正交性原理,最优预测的估计误差,3、kalman滤波算法,应该与已知值正交,故有将式(18)代入(19),并利用新息过程的正交性,得到由此可以求出权矩阵的表达式:,3、kalman滤波算法,将式(20)代入式(18),状态向量的一步预测的最小均方估计可表示为注意到 并利用状态方程(1),易知下式对k=0,1,n成立:,3、kalman滤波算法,将式(22)代入式(21)右边第一项(求和项),可将其化简为:,3、kalman滤波算法,若定义 并将式(23)和式(24)代入式(21),则得到状态向量一步预测的更新公式:式(25)在kalman滤波算法中起着关键的作用,因为它表明,n+1时刻的状态向量的一步预测分为非自适应(即确定)部分 和自适应(即校正)部分G(n)a(n)。从这个意义上讲,G(n)称为kalman增益(矩阵)是合适的。,3、kalman滤波算法,(2)、 kalman增益的计算 为了完成kalman自适应滤波算法,需要进一步推导kalman增益的实际计算公式。由定义式(24)知,只需要推导期望项 的具体计算公式即可。 将新息过程的计算公式(13)代入式(22),不难得出: 这里使用了状态向量与观测噪声不相关的事实。进一步地,由正交原理引理知,在最小均方误差准则下求得的一步预测估 与预测误差e(n,n-1)彼此正交,即,3、kalman滤波算法,因此,由式(26)及式(27)易得: 将式(27)代入式(24),便得到kalman增益的计算公式如下:式中R(n)是信息过程的相关矩阵,由式(10)定义。,3、kalman滤波算法,(3)、Riccati方程 由式(28)表示的kalman增益与预测状态误差的相关矩阵K(n,n-1)有关,为了最后完成kalman自适应滤波算法,还需要再推导K(n,n-1)的递推公式。 考察状态向量的预测误差:将状态方程(1)和状态向量的一步预测更新公式(25)代入式(29)中,有:将观测方程(2)代入上式,并代入 ,则有:,3、kalman滤波算法,求式(3)所示状态向量的一步预测误差向量的相关矩阵,容易证明:式中使用了e(n+1,n),v1(n),v2(n)彼此不相关的事实,以及和 等关系式。 对式(31)的右边进行展开,然后代入式(28)和(29),可以证明:状态向量预测误差的相关矩阵的递推公式为:式中 式(32)称为Riccati差分方程。,3、kalman滤波算法,若定义 是利用已知的y(1),y(n)求得的状态向量的滤波估计,则定义滤波状态向量的误差向量,可以证明:因此,Riccati差分方程中的矩阵P(n)事实上是滤波误差状态向量的相关矩阵。(4)、kalman滤波算法 将上面推导得到的式(28)、(16)、(13)、(25)、(33)和(32)依次加以归纳,得到基于一步预测的kalman自适应滤波算法如下。初始条件:,3、kalman滤波算法,输入观测向量过程: 观测向量=y(1),y(n)已知参数: 状态转移矩阵F(n+1,n) 观测矩阵C(n) 过程噪声向量的相关矩阵Q1(n) 观测噪声向量的相关矩阵Q2(n)计算:n=1,2,3,3、kalman滤波算法,Kalman滤波器是一种线性的离散时间有限维系统。Kalman滤波器的估计性能是:它使滤波后的状态估计误差的相关矩阵P(n)的迹最小化。这意味着,kalman滤波器是状态向量x(n)的线性最小差估计。 由前面的公式可以得出kalman滤波算法的结构图,如下:,3、kalman滤波算法,