欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    线面垂直判定定理(用)ppt课件.ppt

    • 资源ID:1401210       资源大小:342KB        全文页数:33页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    线面垂直判定定理(用)ppt课件.ppt

    2.3.1(一)直线与平面垂直的判定,一个人走在灯火通明的大街上,会在地面上形成影子,随着人不停的走动,这个影子忽前忽后、忽左忽右,但是无论怎样,人始终与影子相交于一点,并始终保持垂直.,复习引入,讲授新课,1. 直线和平面垂直的定义,讲授新课,如果直线l与平面内的任意一条直线都垂直,则直线l与平面互相垂直,记作l.,1. 直线和平面垂直的定义,讲授新课,如果直线l与平面内的任意一条直线都垂直,则直线l与平面互相垂直,记作l. l叫平面的垂线,叫直线l的垂面.,1. 直线和平面垂直的定义,讲授新课,如果直线l与平面内的任意一条直线都垂直,则直线l与平面互相垂直,记作l. l叫平面的垂线,叫直线l的垂面.直线与平面垂直时,它们惟一的公共点P叫做垂足.,1. 直线和平面垂直的定义,讲授新课,如果直线l与平面内的任意一条直线都垂直,则直线l与平面互相垂直,记作l. l叫平面的垂线,叫直线l的垂面.直线与平面垂直时,它们惟一的公共点P叫做垂足.,1. 直线和平面垂直的定义,举例:生活中直线与平面垂直的现象有哪些?,举例:生活中直线与平面垂直的现象有哪些?,提问:你觉得垂直的依据是什么?,举例:生活中直线与平面垂直的现象有哪些?,提问:你觉得垂直的依据是什么?,思考:给定一条直线和一个平面,如何判定它们是否垂直?,n,m,l,2. 直线和平面垂直的判定,B,定理:一条直线与一个平面内的两条相交直线都垂直,则这条直线与该平面垂直.,l,2. 直线和平面垂直的判定,符号语言:,若lm,ln,mnB,m,n,则l.,练习 如图,在长方体ABCD-ABCD中,与平面BCCB垂直的直线有 ;与直线AA垂直的平面有 .,B,D,C,A,B,A,D,C,例1 已知ab,a,求证:b.,a,b,b,例1 已知ab,a,求证:b.,m,a,b,n,例1 已知ab,a,求证:b.,m,a,b,n,线面垂直线线垂直线面垂直,例2 在三棱锥P-ABC中,PA平面ABC,ABBC,PA=AB,D为PB的中点,求证:ADPC.,直线与平面垂直的判定方法:,1.定义;,2.定理;,3.两条平行线中的一条与平面垂直, 则另一条也与这个平面垂直.,线面垂直线线垂直,课堂小结,瀛海学校 杨宇,2.3.1(二)三垂线定理,一条直线和一个平面相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点叫做斜足。,斜线上一点与斜足间的线段叫做这点到这个平面的斜线段。,过斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面上的射影;,斜线上任意一点在平面上的射影,一定在斜线的射影上。,2.斜线,斜线段,AC在的射影,已知PO是平面的斜线, PA 、AO是PO在平面上的射影。a ,aAO。求证: aPO,在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么,它就和这条斜线垂直。,三垂线定理,证明:,aPO,PA a ,AOa,a平面PAO,PO平面PAO,PA a,三垂线定理: 在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么,它就和这条斜线垂直。,aPO,PAOA是PO在内的射影a AOa ,由三垂线定理,三垂线定理包含几种垂直关系?,线影垂直,线面垂直, 线斜垂直,直 线 和平面垂直,平面内的直线和平面一条斜线的射影垂直,平面内的直线和平面的一条斜线垂直,例1 已知P 是平面ABC 外一点, PA平面ABC ,AC BC, 求证: PC BC,证明: PA平面ABC AC是PC在平面ABC上的射影 BC平面ABC BC AC 由三垂线定理得 BC PC,例2 直接利用三垂线定理证明下列各题:,(1) PA正方形ABCD所在平面,O为对角线BD的中点求证:POBD,PCBD,(3) 在正方体AC1中,求证:A1CB1D1,A1CBC1,(2) 已知:PA平面PBC,PB=PC,M是BC的中点,求证:BCAM,(1),(2),(3),三垂线定理解题的关键:找三垂!,怎么找?,一找直线和平面垂直,二找平面的斜线在平面 内的射影和平面内的 一条直线垂直,注意:由一垂、二垂直接得出第三垂 并不是三垂都作为已知条件,解题回顾,线影垂直,线斜垂直,平面内的一条直线和平面的一条斜线在平面内的射影垂直,平面内的一条直线和平面的一条斜线垂直,三垂线定理的逆定理,?,在平面内的一条直线,如果和这个平面的一条斜线垂直,那么,它也和这条斜线的射影垂直。,三垂线定理的逆定理,aAO,PAOA是PO在内的射影a POa ,由三垂线逆定理,三垂线定理的逆定理 在平面内的一条直线,如果和这个平面的一条斜线垂直,那么,它也和这条斜线的射影垂直。,三垂线定理: 在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么,它就和这条斜线垂直。,定理,逆定理,例4 在四面体ABCD中,已知ABCD,ADBC求证:ACBD,BCDO,于是ADBC.,证明:作AO平面BCD于点O,连接BO,CO,DO,则BO,CO,DO分别为AB,AC,AD在平面BCD上的射影。,O,ABCD,CD 面BCD,,同理BDCO,,于是O是BCD的垂心,,由三垂线逆定理CDBO,,1.已知 PA、PB、PC两两垂直,求证:P在平面ABC内的射影是ABC的垂心。,2.在ABCDA1B1C1D1中,求证:AC1平面BA1D,Study hard and make progress everyday !,

    注意事项

    本文(线面垂直判定定理(用)ppt课件.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开