欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    二阶常系数齐次线性微分方程的ppt课件.ppt

    • 资源ID:1383675       资源大小:315.50KB        全文页数:21页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    二阶常系数齐次线性微分方程的ppt课件.ppt

    2022/11/17,1,二阶常系数齐次线性微分方程的通解,2022/11/17,2,一、定义,n阶常系数线性微分方程的标准形式,二阶常系数齐次线性方程的标准形式,二阶常系数非齐次线性方程的标准形式,2022/11/17,3,二、二阶常系数齐次线性方程解法,-特征方程法,将其代入上方程, 得,故有,特征方程,特征根,2022/11/17,4, 有两个不相等的实根,两个线性无关的特解,得齐次方程的通解为,特征根为,2022/11/17,5,反之:,2022/11/17,6, 有两个相等的实根,一特解为,得齐次方程的通解为,特征根为,2022/11/17,7,反之:,2022/11/17,8, 有一对共轭复根,重新组合,得齐次方程的通解为,特征根为,2022/11/17,9,定义,由常系数齐次线性方程的特征方程的根确定其通解的方法称为特征方程法.,解,特征方程为,解得,故所求通解为,例1,2022/11/17,10,例 1求方程 y - 2y - 3y = 0 的通解.,解该方程的特征方程为 r2 - 2r 3 = 0, 它有两个不等的实根 r1 = - 1, r2 = 3,其对应的两个线性无关的特解为 y1 = e- x 与 y2 = e3x,所以方程的通解为,2022/11/17,11,例 2求方程 y - 4y + 4y = 0 的满足初始条件 y(0) = 1, y(0) = 4 的特解.,解该方程的特征方程为 r2 - 4r + 4 = 0,,求得,将 y(0) = 1,y(0) = 4 代入上两式,得 C1 = 1,C2 = 2,,y = (1 + 2x)e2x.,其对应的两个线性无关的特解为 y1 = e2x 与 y2 = xe2x,,所以通解为,因此,所求特解为,它有重根 r = 2.,2022/11/17,12,解,特征方程为,解得,故所求通解为,例2,2022/11/17,13,例 3求方程 2y + 2y + 3y = 0 的通解.,解该方程的特征方程为 2r2 + 2r + 3 = 0,它有共轭复根,对应的两个线性无关的解为,所以方程的通解为,2022/11/17,14,例 4求方程 y + 4y = 0 的通解.,解该方程的特征方程为 r2 + 4 = 0,它有共轭复根 r1,2 = 2i. 即a = 0,b = 2.,对应的两个线性无关的解 y1 = cos 2x.,y2 = sin 2x.,所以方程的通解为,2022/11/17,15,2022/11/17,16,三、n阶常系数齐次线性方程解法,特征方程为,2022/11/17,17,注意,n次代数方程有n个根, 而特征方程的每一个根都对应着通解中的一项, 且每一项各一个任意常数.,2022/11/17,18,特征根为,故所求通解为,解,特征方程为,例4,2022/11/17,19,二阶常系数齐次微分方程求通解的一般步骤:,(1)写出相应的特征方程;(2)求出特征根;(3)根据特征根的不同情况,得到相应的通解.,(见下表),2022/11/17,20,2022/11/17,21,思考题,求微分方程 的通解.,

    注意事项

    本文(二阶常系数齐次线性微分方程的ppt课件.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开