欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    《数学史》ppt课件.ppt

    • 资源ID:1380076       资源大小:8.83MB        全文页数:28页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    《数学史》ppt课件.ppt

    第三章 中世纪的中国数学,主讲人:翟影 搜集资料:刘玲 ppt制作:李艾娟,3.1周髀算经与九章算术,3.1.1 古代背景,第一章中已涉及了中国远古数与形概念的萌芽。殷商甲骨文中已经使用完整的十进制记数。至迟到春秋战国时代,又开始出现严格的十进位值制筹算记数。,孙子算经中记载的筹算记数法则说:“凡算之法,先识其位。一纵十横,百立千僵。千十相望,百万相当”。,纵式用来表示个位、百位、万位,数字;横式用来表示十位、千位、十万位、数字。纵、横相间,零则以空位表示。这样,数76 031用算筹表示出来是 。这种十进位值记数法是中国古代数学对人类文明的特殊贡献。,关于几何学,史记“夏本纪”记载说:夏禹治水,“左规矩,右准绳”。“规”是圆规,“矩”是直尺,“准绳”则是确定铅垂方向的器械。,中国古代数学的萌芽,中国古代数学的萌芽原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,仰韶文化时期出土的陶器,上面已刻有表示1234的符号。到原始公社末期,已开始用文字符号取代结绳记事了。,商代(又称殷代,约公元前17世纪约前11世纪):1899年在河南安阳发掘出来的殷墟龟甲和兽骨上所刻的象形文字(甲骨文,公元前14世纪)。 自然数的记法:10进位制,最大的数字是3万。,中国古代数学的萌芽,与此同时,殷人用十个天干和十二个地支组成甲子、乙丑、丙寅、丁卯等60个名称来记60天的日期;在周代,又把以前用阴、阳符号构成的八卦表示八种事物发展为六十四卦,表示64种事物。,周(约公元前11世纪公元前256年):奴隶制经济获得进一步的发展. “数”作为六艺之一,开始形成一个学科。 算筹记数和四则运算已经开始 春秋战国时期:人们已经能熟练地进行筹算。,中国古代数学的萌芽,“数学”一词相当于我国古代的“算术” 数学一词,在中国最早出现在12世纪宋代数学家秦九韶的著作中。他指出“物生有象,象生有数,乘除推阐,务究造化之源者,是数学”。,中国古代数学的萌芽,战国时期的百家争鸣也促进了数学的发展,尤其是对于正名和一些命题的争论直接与数学有关。儒家以“九数”为核心,具有鲜明的政治和人文色彩,并以周易象数学宇宙论为哲学依托.墨家则以几何学为核心,具有一定的抽象性和思辨性,以墨经的逻辑学为其论说的工具。名家认为经过抽象以后的名词概念与它们原来的实体不同,他们提出“矩不方,规不可以为圆”,把“大一”(无穷大)定义为“至大无外”,“小一”(无穷小)定义为“至小无内”。还提出了“一尺之棰,日取其半,万世不竭”等命题。,墨家,墨家不同意“一尺之棰”的命题,提出一个“非半”的命题来进行反驳:将一线段按一半一半地无限分割下去,就必将出现一个不能再分割的“非半”,这个“非半”就是点。,中国古代数学的萌芽,名家的命题论述了有限长度可分割成一个无穷序列,墨家的命题则指出了这种无限分割的变化和结果。名家和墨家的数学定义和数学命题的讨论,对中国古代数学理论的发展是很有意义的。,3.1.2周髀算经,在现存的中国古代数学著作中,周髀算经是最早的一部。 作者不祥,成书年代应不晚于公元前2世纪西汉时期,但书中涉及的数学、天文知识,有的可追溯到西周(公元前11世纪-前8世纪)。这部著作实际上是从数学上讨论“盖天说”(天圆地方)宇宙模型,反映了中国古代数学与天文学的密切联系。从数学上看,周髀算经主要的成就是分数运算、勾股定理及其在天文测量中的应用,其中关于勾股定理的论述最为突出。,“周髀”是测量日影的工具八尺长竿,周髀算经上卷 :勾股定理的证明,昔者周公问于商高曰:“窃闻乎大夫善数也,请问昔者包牺立周天历度夫天可不阶而升,地不可得尺寸而度,请问数安从出?” 商高曰:“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。故折矩,以为句广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所生也。”,“勾广三,股修四,径隅五”,商高定理-勾股定理,返回,“以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日.”,古典数学的形成与发展时期,周人的测日影表古代认为夏至时立一8尺高的标竿,它的影长正好是6尺。“求邪至日者,以日下为勾,以日高为股,勾股各自乘,并而开方除之,得邪至日从髀所旁至日所十万里。”,影差d =后影长BD 前影长AC = b a,表距AB = e,中国数学史上最先完成勾股定理证明的数学家,是公元3世纪三国时期的赵爽(吴)。赵爽注周髀算经,作“勾股圆方图”,其中的“弦图”,相当于运用面积的出入相补证明了勾股定理。,考察以一直角三角形的勾和股为边的两个正方形的合并图形,其面积应有 如果将这合并图形所含的两个三角形移补到图中所示的位置,将得到一个以原三角形之弦为边的正方形,其面积应为 ,因此,古代数学家赵爽,赵爽,又名婴,字君卿,中国数学家。东汉末至三国时代吴国人。他是我国历史上著名的数学家与天文学家。生平不详,约生活于公元3世纪初。赵爽的周髀算经注逐段解释周髀经文。,3.1.3九章算术,九章算术是中国古典数学最重要的著作。成书年代至迟在公元前1世纪,其中的数学内容,有些也可以追溯到周代。 周礼记载,西周贵族子弟必学的六门课程(“六艺”)中有一门是“九数”,刘徽九章算术注“序”中就称九章算术是由“九数”发展而来,并经过西汉张苍(?-公元前152)、耿寿昌等人删补。,九章算术采用问题集的形式,全书246个问题,分成九章。,中国古代数学体系形成,九章算术是战国、秦、汉封建社会创立并巩固时期数学发展的总结,就其数学成就来说,堪称是世界数学名著。例如分数四则运算、今有术(西方称三率法)、开平方与开立方(包括二次方程数值解法)、盈不足术(西方称双设法)、各种面积和体积公式、线性方程组解法、正负数运算的加减法则、勾股形解法(特别是勾股定理和求勾股数的方法)等,水平都是很高的。其中方程组解法和正负数加减法则在世界数学发展上是遥遥领先的。就其特点来说,它形成了一个以筹算为中心、与古希腊数学完全不同的独立体系。,九章算术的内容是由周代的“九数”发展而来的。刘徽称:“周公制礼而有九数,九数之流则九章是矣”。,九章算术标志着中国传统数学的知识体系已初步形成。代表了中国传统数学体系和思想方法的特点:注重实际问题的数值计算方法,缺少抽象的理论和逻辑系统性,使用算筹,形成世界上独有的计算工具和程序化计算方法,明代刊印的九章算术注,中国古代数学体系形成,九章算术在隋唐时期曾传到朝鲜、日本,并成为这些国家当时的数学教科书。它的一些成就如十进位值制、今有术、盈不足术等还传到印度和阿拉伯,并通过印度、阿拉伯传到欧洲,促进了世界数学的发展。,1.方田:主要是田亩面积的计算和分数的计算,是世界 上最早对分数进行系统叙述的著作。 2.粟米:组好事粮食交易的计算方法,其中涉及许多比 例问题。 3.衰(读作“翠”)分:主要内容为分配比例的算法。 4.少广:主要讲开平方和开立方的方法。 5.商功:主要是土石方和用工量等工程数学问题,以体 积的计算为主。 6.均输:计算税收等更加复杂的比例问题。 7.盈不足:双设法的问题。 8.方程:主要是联立一次方程组的解法和正负数的加减 法,在世界数学史上是第一次出现。 9.勾股:勾股定理的应用。,九章算术的内容,(一)算术方面,(1)分数四则运算法则。九章算术“方田”章给出了完整的分数加、减、乘、除以及约分和通分运算法则。 (2)比例算法。九章算术“粟米”、“衰分”、“均输”诸章集中讨论比例问题,并提出“今有术”作为解决各类比例问题的基本算法。 (3)盈不足术。“盈不足”术是以盈亏类问题为原型,通过两次假设来求繁难算术问题的解的方法。 “盈不足术”在中世纪阿拉伯数学著作中称为“契丹算法”,即中国算法。,(二)代数方面,(1)方程术。“方程术”即线性联立方程组的解法。 (2)正负术。九章算术在代数方面的另一项突出贡献是负数的引进。(3) 开方术。九章算术“少广”章有“开方术”和“开立方术”,给出了开平方和开立方的算法。九章算术开方术本质上是一种减根变换法,开创了后来开更高次方和求高次方程数值解之先河。,(三)几何方面,九章算术“方田”、“商功”和“勾股”三章处理几何问题。其中“方田”章讨论面积问题,“商功”章讨论体积问题,“勾股”章则是关于勾股定理的应用。,各种几何图形的名称就反映着它们的现实来源。如平面图形有“方田”(正方形)、“直田”(矩形)、“圭田”(三角形)、“箕(ji)田”(梯形)、“圆田”(圆)、“弧田”(弓形)、“环田”(圆环)等;立体图形则有“仓”(长方体)、“方亭”(平截头方锥)、“阳马”(底面为长方形而有一棱与地面垂直的锥体)以及“刍童”(上、下底面都是长方形的棱台)等等。,九章算术中给出的所有直线形的面、体积公式都是准确的,例如刍童(上下底面都是长方形的棱台)体积公式:,羡除(三个侧面均为梯形的楔形体)体积公式为:,谢 谢!,

    注意事项

    本文(《数学史》ppt课件.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开