《正态分布(一)》ppt课件.ppt
2.4 正态分布,高二数学 选修2-3,引入,连续型随机变量可能取某个区间上的任何值,所以通常感兴趣的是它落在某个区间的概率.离散型随机变量的概率分布规律用分布列描述,而连续型随机变量的概率分布规律用密度曲线描述.,思考:连续型随机变量的概率分布规律又怎样研究呢?,频率分布直方图,教 学 情 景,96 114 128 106 89 97 103 114 109 101106 104 97 93 117 108 104 113 94 108 87 112 109 117 102 97 113 109 89 101105 104 99 101 117 108 104 97 94 99103 112 98 85 106 89 97 103 125 109 101 106 124 97 109 117 108 104 104 94 108 96 106 85 106 89 99 106 112 103 129 89 96 123 85 106 102 97 103 114 109 101 106 115 97 93 117 108 104 112 113 108 96 98 85 106 89 97 103 114,第一步:求极差 ;1298544,第二步:确定组数,组距;44/5=8.8,第三步:将数据分9组;85,90,(90,95, ,(125,130,第四步:列出频率分布表,第五步:画出频率分布直方图,x,y,频率/组距,0 85 90 95 100 105 110 115 120 125 130,0.01 ,0.02 ,0.03 ,0.04 ,0.05 ,0.06 ,中间高,两头低,左右大致对称,若数据无限增多且组距无限缩小,那么频率分布直方图的顶边缩小乃至形成一条光滑的曲线,我们称此曲线为概率密度曲线,概率密度曲线的形状特征,“中间高,两头低,左右对称”,概率密度曲线,我们以球槽的编号为横坐标,以小球落入各个球槽的频率值为纵坐标,可以画出频率分布直方图,1,2,3,4,5,6,球槽编号,频率组距,新课探究,7,8,9,10,11,试验,思考:球槽数增加,重复次数增加,频率分布直方图怎么变化?,频率组距,随着重复次数的增加,球槽数增加直方图的形状会越来越像一条“钟形”曲线,球槽编号,新课探究,这条曲线(就是或近似地是)下面函数的图象:,正态分布密度曲线定义:,例1、下列函数是正态密度函数的是( ) A. B. C. D.,B,若用X表示落下的小球第1次与高尔顿板底部接触时的坐标,则X是一个随机变量.X落在区间(a,b的概率为:,2.正态分布的定义:,如果对于任何实数 ab,随机变量X满足:,则称为X 的正态分布. 正态分布由参数、唯一确定.正态分布记作N( ,2).,如果随机变量X服从正态分布,则记作 X N( ,2),m 的意义,产品 尺寸(mm),总体平均数反映总体随机变量的,平均水平,x3,x4,x= ,总体标准差反映总体随机变量的,集中与分散的程度,s的意义,正态总体的函数表示式,当= 0,=1时,标准正态总体的函数表示式,3、正态曲线的性质,具有两头低、中间高、左右对称的基本特征,(1)曲线在x轴的上方,与x轴不相交.,(2)曲线是单峰的,它关于直线x=对称.,正态曲线的性质,(4)曲线与x轴之间的面积为1,(3)曲线在x=处达到峰值(最高点),方差相等、均数不等的正态分布图示,=0.5,=-1,=0,=1,若 固定, 随 值的变化而沿x轴平移, 故 称为位置参数;,均值相等、方差不等的正态分布图示,=1,=0,若 固定, 大时, 曲线矮而胖; 小时, 曲线瘦而高, 故称 为形状参数。,(6)当一定时,曲线的形状由确定 .越大,曲线越“矮胖”,表示总体的分布越分散;越小,曲线越“瘦高”,表示总体的分布越集中.,(5)当 x时,曲线下降.并且当曲线向左、右两边无限延伸时,以x轴为渐近线,向它无限靠近.,正态曲线的性质,例 把一个正态曲线a沿着横轴方向向右移动2个单位,得到新的一条曲线b。下列说法中不正确的是( )A.曲线b仍然是正态曲线;B.曲线a和曲线b的最高点的纵坐标相等;C.以曲线b为概率密度曲线的总体的期望比以曲线a为概率密度曲线的总体的期望大2;D.以曲线b为概率密度曲线的总体的方差比以曲线a为概率密度曲线的总体的方差大2。,D,正态曲线下的面积规律,X轴与正态曲线所夹面积恒等于1 。对称区域面积相等。,S(-,-X),S(X,)S(-,-X),正态曲线下的面积规律,对称区域面积相等。,S(-x1, -x2),-x1 -x2 x2 x1,S(x1,x2)=S(-x2,-x1),4、特殊区间的概率:,若XN ,则对于任何实数a0,概率 为如图中的阴影部分的面积,对于固定的 和 而言,该面积随着 的减少而变大。这说明 越小, 落在区间 的概率越大,即X集中在 周围概率越大。,特别地有,我们从上图看到,正态总体在 以外取值的概率只有4.6,在 以外取值的概率只有0.3 。,由于这些概率值很小(一般不超过5 ),通常称这些情况发生为小概率事件。,例4、在某次数学考试中,考生的成绩 服从一个正态分布,即 N(90,100).(1)试求考试成绩 位于区间(70,110)上的概率是多少?(2)若这次考试共有2000名考生,试估计考试成绩在(80,100)间的考生大约有多少人?,练习:1、已知一次考试共有60名同学参加,考生的成绩X ,据此估计,大约应有57人的分数在下列哪个区间内?( )(90,110 B. (95,125 C. (100,120 D.(105,115,A,0.9544,1365,2、已知XN (0,1),则X在区间 内取值的概率等于( )A.0.9544 B.0.0456 C.0.9772 D.0.02283、设离散型随机变量XN(0,1),则 = , = .4、若XN(5,1), 则P(6X7)=,D,0.5,0.9544,5、若已知正态总体落在区间 的概率为0.5,则相应的正态曲线在x= 时达到最高点。,0.3,0.1359,