欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    《回归分析的基本思想及其初步应用》 ppt课件.ppt

    • 资源ID:1378688       资源大小:620KB        全文页数:25页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    《回归分析的基本思想及其初步应用》 ppt课件.ppt

    回归分析,选修2-3,1、两个变量的关系,不相关,相关关系,函数关系,线性相关,非线性相关,问题1:现实生活中两个变量间的关系有哪些?,相关关系:对于两个变量,当自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系。,2、现实生活中存在着大量的相关关系。 如:人的身高与年龄; 产品的成本与生产数量; 商品的销售额与广告费; 家庭的支出与收入。等等,探索:水稻产量y与施肥量x之间大致有何规律?,10 20 30 40 50,500450400350300,发现:图中各点,大致分布在某条直线附近。,探索2:在这些点附近可画直线不止一条, 哪条直线最能代表x与y之间的关系呢?,施化肥量,水稻产量,散点图,最小二乘法:,称为样本点的中心。,1、已知回归直线斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为( ),C,练习:,20070326,2、某考察团对全国10个城市进行职工人均工资水平x(千元)与居民人均消费水平y(千元)统计调查,y与x具有相关关系,回归方程y = 0.66x + 1.562,若某城市居民人均消费水平为7.675(千元),估计该城市人均消费额占人均工资收入的百分比约为( )A83% B72%C67% D66%,A,问题2:对于线性相关的两个变量用什么方法来刻划之间的关系呢?,2、最小二乘估计,最小二乘估计下的线性回归方程:,问题一:结合例1得出线性回归模型及随机误差。并且区分函数模型和回归模型。,2.回归方程:,由于所有的样本点不共线,而只是散布在某一直线的附近,所以身高和体重的关系可以用线性回归模型来表示:,注:随机误差e包含预报体重不能由身高的线性函数解释的所有部分。,函数模型与“回归模型”的关系,函数模型:因变量y完全由自变量x确定回归模型: 预报变量y完全由解释变量x和随机误差e确定,问题二:在线性回归模型中,e是用bx+a预报真实值y的随机误差,它是一个不可观测的量,那么应如何研究随机误差呢?,结合例1除了身高影响体重外的其他因素是不可测量的,不能希望有某种方法获取随机误差的值以提高预报变量的估计精度,但却可以估计预报变量观测值中所包含的随机误差,这对我们查找样本数据中的错误和模型的评价极为有用,因此在此我们引入残差概念。,问题三:如何发现数据中的错误?如何衡量随机模型的拟合效果?,(1)我们可以通过分析发现原始数据中的可疑数据,判断建立模型的拟合效果。,残差图的制作和作用:制作:坐标纵轴为残差变量,横轴可以有不同的选择.横轴为编号:可以考察残差与编号次序之间的关系, 横轴为解释变量:可以考察残差与解释变量的关系,作用:判断模型的适用性若模型选择的正确,残差图中的点应该分布在以横轴为中心的带形区域.,下面表格列出了女大学生身高和体重的原始数据以及相应的残差数据。,残差图的制作及作用。坐标纵轴为残差变量,横轴可以有不同的选择;若模型选择的正确,残差图中的点应该分布在以横轴为心的带形区域;对于远离横轴的点,要特别注意。,身高与体重残差图,几点说明: 第一个样本点和第6个样本点的残差比较大,需要确认在采集过程中是否有人为的错误。如果数据采集有错误,就予以纠正,然后再重新利用线性回归模型拟合数据;如果数据采集没有错误,则需要寻找其他的原因。 另外,残差点比较均匀地落在水平的带状区域中,说明选用的模型计较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高。,注:相关指数R2是度量模型拟合效果的一种指标。在线性模型中,它代表自变量刻画预报变量的能力。,问题四:若两个变量呈现非线性关系,如何解决?(分析例2),例2 一只红铃虫的产卵数y和温度x有关。现收集了7组观测数据列于表中:,(1)试建立产卵数y与温度x之间的回归方程;并预测温度为28oC时产卵数目。(2)你所建立的模型中温度在多大程度上解释了产卵数的变化?,方法一:一元函数模型,产卵数,气温,变换 y=bx+a 非线性关系 线性关系,对数,方法三:指数函数模型,最好的模型是哪个?,显然,指数函数模型最好!,

    注意事项

    本文(《回归分析的基本思想及其初步应用》 ppt课件.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开