欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    R语言ppt课件(简略版).ppt

    • 资源ID:1376991       资源大小:352KB        全文页数:97页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    R语言ppt课件(简略版).ppt

    R语言,目录,计算机与R语言,第一章 网络基础知识及R介绍第二章 R语言基础第三章 数据的存储与读取第四章 R的图形功能第五章 R的程序设计第六章 综合实例,第二章 R语言基础,一、一个简短的R会话二、R的基本语法三、R的数据结构,一、一个简短的R会话,数据的描述?mtcarsmtcar:美国Motor Trend杂志收集的32辆汽车(1973-1974车型)的11项指标。,一、一个简短的R会话,数据的浏览所有数据mtcars 前6个观测值head(mtcars)后6个观测值tail(mtcars),一、一个简短的R会话,数据的编辑方法一:data.entry(mtcars)方法二:MTcarsfix(mtcars)区别:edit()修改结果不存入mtcars中;fix()结果保存至mtcars中。,一、一个简短的R会话,浏览变量信息,例如mpg先激活数据集mtcars attach(mtcars) mpg 1 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8 16.4 17.3 15.215 10.4 10.4 14.7 32.4 30.4 33.9 21.5 15.5 15.2 13.3 19.2 27.3 26.0 30.429 15.8 19.7 15.0 21.4,二、R语言的基本语法,1、符号1) 命令或运算提示符2) + 续行符3) # 说明语句字符2、赋值符号1) -2) =,二、R语言的基本语法,3、基本算术运算1) +加号2)- 减号3)*乘号4)/除号5) % 取模6 ) %/% 整除7) 乘方,运算优先级别递增+-*/ %,%/% TRUE=1;FALSE=0,二、R语言的基本语法,4、比较运算符1) 大于2) =大于等于 4)= 小于等于5)= 等于6) != 不等于比较运算得到的结果是逻辑常量TRUE(真)和FALSE(假)。,5、逻辑运算符1) ! x逻辑非当前逻辑值取反运算。2)x & y 逻辑与如果两个表达式的值均为TRUE,结果才为TRUE,否则为FALSE。3) x&y逻辑与若x,y为向量只比较第一个元素。,二、R语言的基本语法,二、R语言的基本语法,4)x | y 逻辑或如果x和y的值均为FALSE,结果才为FALSE,否则为TRUE。向量对每个元素进行比较。5)x | y逻辑或若x和y为向量只比较第一个元素。6) xor(x,y) 异或两个逻辑值不相同,则异或结果为真。反之,为假。,二、R语言的基本语法,6、求助符号1) ?2) help(),7、常量和变量1)常量是其值不变的量,如1234,“abc等数值、字符串和逻辑值等。2)变量是其值可变的量,如x-3,x就是一个变量,当x-4时,x的值被重新赋值为4。变量名由字母、数字和下划线组成,变量的第一个字符为字母。3)显示变量列表:显示现在内存中已创建的变量名,使用ls()函数。4)显示变量值:直接输入变量名或使用print()函数5)清除:将变量从内存中清除,使用rm() 。,思考题:下列()表示的是变量。A.123B.TRUEC.InfD.abc下列()不可以作为变量名。A.1a2bB.a1b2C.a_bD.a.b下列()可以作为变量名。A.TRUEB.InfC.TrueD.NaN下列赋值语句错误的是()。A.a-1B.a=1C.1=aD. A_1-”1”,三、R语言的数据结构,1、R的对象与属性R通过一些对象来运行,对象包括数据类型和长度两个内在属性。数据类型是对象元素的基本种类,共有四种:数值型(numeric)字符型(character)逻辑型(logical)复数型(complex),三、R语言的数据结构,数值型:包括整型(integer)、双精度实型(double),对很大的数据则可用指数形式表示例如:1、0.5、-0.5、2.1e23(指数形式表示的数值)。R可以表示无穷的数值,用Inf和-Inf表示+和-,或者用NaN表示不是数字的值(Not a Number的意思)。例如:5/0显示的结果为Inf、Inf-Inf显示的结果为NaN。,三、R语言的数据结构,字符型:使用”双引号或单引号作为定界符。例如:abc、R语言、123、123-321abc 、R语言、123 、123-321 如果需要在字符型数据中引用双引号或单引号的话,可以在双引号前加上反斜杠。例如:Tom said:Hello!或者使用单引号作为定界符例如:Tom said:Hello!、Tom said:Hello!对于单引号也是一样。例如:13 12 、 13 12、1312,三、R语言的数据结构,逻辑型:TRUEFALSE缺失数据用NA(Not Available的意思)来表示。NA是逻辑常量。,三、R语言的数据结构,数据对象的长度是对象中元素的数目。函数mode()可以得到对象的类型,length()可以得到对象的长度。例如xmode(x)1 numericlength(x)1 1mode(a)-CHINA; mode(compare)-TRUE; mode(z)-1i1 character2 logical3 complex,三、R语言的数据结构,思考题:下列不是数值型数据的是()。A123B.12.3C. 123 D.12e2.3下列是字符型数据的是()。A. TRUEB.1e2C. 123 D.5+1i下列字符型定界符用法错误的是()。A ab c B. ab c C. abc D. ab c 下列是逻辑型数据的是()。A TrueB.FALSEC.InfD.NaNInf是()型的数据。A.数值型B.NA型C.字符型D.逻辑型,三、R语言的数据结构,统计实例例:一家保险公司收集到由36个投保个人组成的随机样本,得到每个投保人的年龄(周岁)数据如表所示。试确定投保人平均年龄90%的置信区间。,三、R语言的数据结构,注:置信区间是指数据可靠程度的范围。90%指置信水平。求置信水平下的置信区间公式为:即x的均值加减常用置信水平的正态分布的临界值乘以样本标准差与样本个数开方的差。90%- =1.64595%- =1.9699%- =2.58,三、R语言的数据结构,x-c(23,35,39,27,36,44, 36,42,46,43,31,33, 42,53,45,54,47,24,34,28,39,36,44,40, 39,49,38,34,48,50,34,39,45,48,45,32)m-mean(x)s-sd(x)z1-m+1.645*(s/sqrt(36)z2-m-1.645*(s/sqrt(36)z-c(z1,z2)z,注:新建程序脚本实现,三、R语言的数据结构,三、R语言的数据结构,说明:向量是一个变量,是R中最常用、最基本的操作对象;因子是一个分类变量;数组是一个k维的数据表;矩阵是数组的一个特例,其维数k=2。注意:数据或者矩阵中的所有元素都必须是同一种类型的;数据框是由一个或几个向量和(或)因子构成,它们必须是等长的,但是可以是不同的数据类型;“ts”表示时间序列数据,它包含一些额外的属性,例如频率和时间;列表可以包含任何类型的对象,包括列表。,三、R语言的数据结构,2、向量的建立 1)建立数值型向量数值型向量是统计分析中最常用的向量,可以用下面四个函数建立:(1)seq( )或“:” #若向量序列具有较为简单的规律(2)rep( )#若向量序列具有较为复杂的规律(3)sequence() #输出从1到参数的向量(4)c( )#若向量序列没有什么规律(5)scan( )#通过键盘逐个输入,三、R语言的数据结构,1、n1:n2#生成从n1到n2步长为1(或-1)的向量例如: 1:101 1 2 3 4 5 6 7 8 9 10 a 1:(10-1)1 1 2 3 4 5 6 7 8 9 1:10-11 0 1 2 3 4 5 6 7 8 9,三、R语言的数据结构,2、seq(n1,n2,by=n3,length=n4)#生成从n1到n2的向量, n3为步长,n4为生成元素的数量 seq(1,10)1 1 2 3 4 5 6 7 8 9 10 seq(1,5,by=0.5)1 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 seq(1,10,length=11)1 1.0 1.9 2.8 3.7 4.6 5.5 6.4 7.3 8.2 9.1 10.0,三、R语言的数据结构,3、rep(n1,n2)#生成n1重复n2次的向量 rep(2,3)1 2 2 2 rep(1:5,2)1 1 2 3 4 5 1 2 3 4 5 rep(1:5,1:5)1 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 rep(1:5,rep(2,5)1 1 1 2 2 3 3 4 4 5 5,三、R语言的数据结构,4、c()#直接输出向量 x=c(42,7,64,9) length(x)5、scan()#通过键盘建立向量 scan()1: 1 3 6 8 #此行末打一空格后回车5: #冒号后直接打回车Read 4 items1 1 3 6 8,三、R语言的数据结构,6、sequence(n1)#生成从1开始到n1结束步长为1的向量 sequence(5)1 1 2 3 4 5 sequence(c(5,5)1 1 2 3 4 5 1 2 3 4 5 sequence(c(5,4)1 1 2 3 4 5 1 2 3 4,思考题:下列()不能生成向量(1 5 4 3 2 1)。A. 5:1 B. 6-1:5 C.seq(1,5,by=-1)D.6-sequence(5)下列()不能生成向量(1 1 2 3 4 5 1 2 3 4 5)。A. rep(1:5,2)B. sequence(rep(5,2)C. 1:10%6D. (0:9%5)+1,三、R语言的数据结构,2) 数值型向量的运算向量的运算方法如下:(1)向量与一个常数的加、减、乘、除为向量的每一个元素与此常数进行加、减、乘、除;(2)向量的乘方()与开方(sqrt)为每一个元素的乘方与开方,这对log,exp,sin,cos,tan 等普通的运算函数同样适用;(3)同样长度向量的加、减、乘、除等运算为对应元素进行加、减、乘、除等;(4)不同长度向量的加、减、乘、除遵从循环法则(recycling rule),但要注意这种场合通常要求向量的长度为倍数关系,否则会出现警告:“长向量并非是短向量的整数倍”。,三、R语言的数据结构,循环法则:同一个表达式中的向量并不需要具有相同的长度,如果它们的长度不同,表达式的结果是一个与表达式中最长向量有相同长度的向量,表达式中较短的向量会根据它的长度被重复使用若干次(不一定是整数次),直到与长度最长的向量相匹配,而常数将被不断重复。,三、R语言的数据结构, sqrt(c(2,4,25)1 1.414214 2.000000 5.000000 1:2+1:41 2 4 4 6 1:4+1:71 2 4 6 8 6 8 10警告信息:In 1:4 + 1:7 : 长的对象长度不是短的对象长度的整倍数,例子: 5+c(4,7,17)1 9 12 22 5*c(4,7,17)1 20 35 85 c(-1,3,-17)+c(4,7,17)1 3 10 0 c(2,4,5)21 4 16 25,统计实例两变量线形相关系数的计算。在-1和+1之间波动,其绝对值越接近1,两个变量间的直线相关越密切。例题:trees数据集中树木高度(Height)和木材体积(Volume)的相关关系分析。(1)绘制散点图(2)计算相关系数值。,三、R语言的数据结构,3)建立字符型向量1. c() 直接输入向量例如: c(a,b,1,1e2,TRUE)#数字、逻辑型数据被强制转换为字符串1 a b 1 100 TRUE,2. paste() 接受任意字符,并顺次组合连成字符串,在默认情况下,各字符串由一个空格分隔,可以通过sep=string把它更改为其他字符,包括空字符串。 paste(a,1)1 a 1 paste(c(a,b),1)1 a 1 b 1 paste(c(a,b),c(1,2)1 a 1 b 2 paste(app, le,sep=)1 apple,三、R语言的数据结构,例子z-c(green,blue sky,-99)paste(1:12) paste(A, 1:6, sep = ) labs-paste(c(X, Y),1:10,sep= )paste(Today is, date(),3. rep() #生成重复的向量例如:rep(a,3)1 a a arep(c(a,b),3)1 a b a b a brep(c(a,b,c),rep(2,3)1 a a b b c c,4)建立逻辑型向量 1. c() 直接输入向量例如:c(TRUE,FALSE,TRUE)1 TRUE FALSE TRUE2. rep() #生成重复的向量例如: rep(c(TRUE,FALSE),2)1 TRUE FALSE TRUE FALSE3. 由运算生成例如: 1:531 FALSE FALSE FALSE TRUE TRUE,三、R语言的数据结构,5)建立因子型向量 一个因子(factor)或因子向量不仅包括分类变量本身,还包括变量不同的可能水平。 factor(x,levels = sort(unique(x), na.last = TRUE),labels = levels, exclude =NA, ordered = is.ordered(x)说明:这里x可以是数值型或字符型向量。levels用来指定因子的水平(缺省值是向量x中不同的值);labels用来指定水平的名字;exclude表示从向量x中剔除的水平值;ordered是一个逻辑型选项,用来指定因子的水平是否有次序。,三、R语言的数据结构,(1)将字符型向量转换为因子 a a a1 green blue green yellowLevels: blue green yellow,三、R语言的数据结构,(2)将数值型向量转换成因子 b b b1 1,2,3,1Levels: 1 2 3 factor(rep(1:5,2)1 1 2 3 4 5 1 2 3 4 5Levels: 1 2 3 4 5,三、R语言的数据结构,(3)将字符型因子转换为数值型因子 a a levels(a) a1 2 1 2 3Levels: 1 2 3 4 ff ff1 1 2 3Levels: 1 2 3,三、R语言的数据结构,(4)将数值型因子转换为字符型因子 b b levels(b) b1 low middle high lowLevels: low middle high ff ff1 A B CLevels: A B C注:函数levels()用来提取一个因子中可能的水平值,,三、R语言的数据结构,例如 ff ff1 2 4Levels: 2 3 4 5 levels(ff)1 2 3 4 5,三、R语言的数据结构,(5)函数gl( )能产生规则的因子序列。用法是gl(k, n, length=产生数据的个数, label=每个水平因子的名字)其中k是水平数,n是每个水平重复的次数。例子gl(3,5)1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 Levels: 1 2 3,三、R语言的数据结构, gl(3,5,length=30) gl(2,6,label=c(Male,Female) gl(2,10) gl(2,1,length=20) gl(2,2,length=20),三、R语言的数据结构,6)向量的下标与子集的提取 选择一个向量的子集可以通过在其名称后面追加一个方括号中的索引向量来完成。(1)正整数向量 x1:10选取了x的前10个元素(假设x的长度不小于10)。 xc(1,4)取出了向量x的第1和第4个元素。 xx2-7#改变向量的元素的值,三、R语言的数据结构,(2)负整数向量 y fruit names(fruit) fruit lunch lunch,三、R语言的数据结构,(4)逻辑向量 x x10 xx10 xx10numeric(0) xx10 x,思考题:1.已知a5D.a53. 表达式max(c(1:5,7:10)6:8)的结果是()。A. 1B.6C.7D.94. 已知a-c(1:5,7:10),则max(a6:8-3:1)的结果是()。A. 1B.3C.9D.105. 已知a-c(1:5,7:10),则min(a-(1:7)的结果是()。A. 1B.3C.9D.10,三、R语言的数据结构,3、数组与矩阵的建立数组是一个k(1)维的数据表,矩阵是数组的一个特例,其维数k=2,向量可以看成维数为k=1的数组。而且向量、数组或者矩阵中的所有元素都必须是同一种类型的。1)数组的建立格式: array(data,dim,dimnames)其中data为一向量,其元素用于构建数组;dim为数组的维数向量;dimnames为由各维的名称构成的向量(字符型),缺省为空。,三、R语言的数据结构,例子 A A, , 1 ,1 ,2 ,3 ,41, 1 4 7 102, 2 5 8 113, 3 6 9 12, , 2 ,1 ,2 ,3 ,41, 1 4 7 102, 2 5 8 113, 3 6 9 12,其中,dim=c(3,4,2)的第一个3代表有3行,第二个4代表有4列,第三个2代表有2组。,A - array(1:8,dim = c(2,2,2)会怎样?,三、R语言的数据结构, B B dim(A) dimnames(A) A colnames(A) rownames(A) dimnames(A),三、R语言的数据结构,例子 A A A A A A,三、R语言的数据结构,2)矩阵的建立由于矩阵在数学及统计中的特殊性,在R中最为常用的是使用命令matrix( )建立矩阵。格式:matrix(data=NA,nrow=1,ncol=1,byrow=FALSE,dimnames=NULL)其中data是一个向量数据,nrow是矩阵的行数,ncol是矩阵的列数,当byrow=TRUE时,生成矩阵的数据按行放置,缺省时相当于byrow=FALSE,数据按列放置。dimnames是数组维的名字,缺省时为空。,三、R语言的数据结构,例子 X X X X A A注意:循环准则仍然适用于matrix(),但是要求数据项的个数等于矩阵的列数的倍数,否则会出现警告。,三、R语言的数据结构,3)数组与矩阵的下标(index)与子集(元素)的提取 同向量的下标一样,矩阵与数组的下标可以使用正整数、负整数和逻辑表达式,从而实现子集的提取或修改。,三、R语言的数据结构, X X X2,2 #取出一个元素 X2, #取出一行元素 X,2 #取出一列元素 X-1, #去掉第1个行 X,-2 #去掉第2个列 X,3Xis.na(x) X,思考题:已知矩阵a-matrix(rep(1:4,4),4,4);若要将a转换成如下矩阵,应使用的命令是()。 ,1 ,21, 2 22, 3 3A. a-(c(1,4),-(3:4)B. a-(3:4),-c(1,4)C.a-1,-4, ,3:4 D. a3:4,2:3,三、R语言的数据结构,4)对矩阵的运算(函数)(1)矩阵的代数运算转置函数t( ) X X t(X)提取对角元diag( ) X X diag(X)diag(3) #生成3行的单位矩阵,一个 mn矩阵A的行与列的元素互换而得到的nm矩阵,称为A的转置矩阵 。,对角线元素都是 1的 n阶对角矩阵,称为n阶单位矩阵,三、R语言的数据结构,按行合并rbind( )与按列合并cbind( ) m1 m2 rbind(m1,m2) cbind(m1,m2)矩阵的逐元乘积“*” m2*m2,1 ,2 ,3 ,41, 1 1 2 22, 1 1 2 2,1 ,21, 1 12, 1 13, 2 24, 2 2,1 ,21, 4 42, 4 4,1 ,21, 1 12, 1 1,1 ,21, 2 22, 2 2,m1,m2,rbind(m1,m2),cbind(m1,m2),m2*m2,三、R语言的数据结构,矩阵的代数乘积“%*%”【注】矩阵的代数乘法 设 分别是m n, n p矩阵, 则矩阵A与B的乘积是一m p矩阵:,例1: m3 m4 m3%*%m4 ,1 ,21, 11 192, 16 28例2: rbind(m1,m2)%*% cbind(m1,m2) ,1 ,2,3 ,41, 2 2 4 42, 2 2 4 43, 4 4 8 84, 4 4 8 8 cbind(m1,m2) %*% rbind(m1,m2) ,1 ,21, 10 102, 10 10,三、R语言的数据结构,方阵的行列式det( ) X X ,1 ,21, 1 32, 2 4 det(X)1 -2说明:行列式相当于主对角线(左上至右下)元素的乘积减去副对角线(右上至左下)元素的乘积。,三、R语言的数据结构,其它函数crossprod( ):交叉乘积函数;eigen( ):特征根与特征向量函数;qr( ):QR分解函数。solve ():逆矩阵函数。例:x-matrix(1:4,2,2) y-solve(x) y,思考题:已知a-matrix(1:4,2,2);b-matrix(5:8,2,2);若要生成如下矩阵,应设置表达式为()。 ,1 ,2 ,3 ,41, 1 2 5 62, 3 4 7 8A.rbind(a,b)B.rbind(t(a),b)C.cbind(a,b)D.cbind(t(a),t(b),矩阵的统计学意义多元线性相关分析:两个变量之间的关系为简单相关,三个或三个以上的称为偏相关(复相关)。例如:做小鼠麻醉实验时,麻醉药品的用量与小鼠的种类,药品的种类,小鼠的体积密切相关。国家财政收入、国民生产总值、税收、进出口贸易总额、经济活动人口数量之间的关系。,X为样本资料矩阵,此时任意两个变量间的相关系数构成的矩阵为:,f=matrix(c(11.3262,36.241,5.1928,3.550,406.82,11.4638,40.382,5.3782,4.120,415.92,11.5993,45.178,5.7170,5.700,429.03,513.2178,2495.299,456.2197,1667.402,786.45,613.3035,3006.700,542.1962,1778.898,790.48),5,5,byrow=T) fcor(f) #计算相关系数pairs(f) #矩阵散点图,三、R语言的数据结构,(2)矩阵的统计运算 函数1:apply(X,MARGIN,FUN)其中X为参与运算的矩阵,FUN为上面的一个函数或“+”、“-”、“*”、“/”(必须放在引号中),MARGIN=1表示按行计算,MARGIN=2表示按列计算。 函数2:sweep(X,MARGIN,STATS,FUN)表示从矩阵X中按MATGIN计算STATS,并从X中除去。 FUN默认是“-”。,三、R语言的数据结构,例1:求均值,中位数等 m apply(m,MARGIN=1,FUN=mean) #求各行的均值 apply(m,MARGIN=2,FUN=mean) #求各列的均值,三、R语言的数据结构,减去中位数 row.med-apply(m,MARGIN=1,FUN=median) sweep(m,MARGIN=1,STATS=row.med,FUN=-),三、R语言的数据结构,4、列表与数据框的建立1)列表的建立列表是一种特别的对象集合,它的元素也由序号(下标)区分,但是各元素的类型可以是任意对象,不同元素不必是同一类型。元素本身允许时其它复杂数据类型,比如,列表的一个元素也允许是列表。,三、R语言的数据结构,格式:Lst-list(name_1=object_1, , name_m=object_m)其中name是列表元素的名称,object是列表元素的对象。,三、R语言的数据结构,例子 Lst Lst$name1 Fred$wife1 Mary$no.children1 3$child.ages1 4 7 9,列表元素总可以用“列表名下标”的格式引用, Lst21 Mary Lst421 7 Lstname1 Fred Lstchild.ageNULL Lstchild.ages1 4 7 9 Lst$name1 Fred Lst$wife1 Mary,三、R语言的数据结构,列表的元素可以修改,只要把元素引用赋值即可。 Lst$name Lst$income list.ABC-c(list.A,list.B,list.C),三、R语言的数据结构,2)数据框的建立统计分析中一个完整的数据集通常是由若干个变量的若干个观测值组成的,在R中称为数据框。,观测值的序号,观测值,变量,维数:二维。,三、R语言的数据结构,矩阵:,数据框:,三、R语言的数据结构,(1)数据框的生成数据框可以用data.frame()函数生成,其用法与list()函数相同,各自变量变成数据框的成分,自变量可以命名,称为变量名。直接建立的函数:data.frame(name_1=object_1, , name_m=object_m) 间接建立的方法:在txt中存入数据如:使用命令: foo-read.table(file=“D:/r/foo.txt”,header=T),treat weightA3.4BNAA5.8, df df Name Sex Age Height Weight1 Alice F 13 56.5 84.02 Becka F 13 65.3 98.03 James M 12 57.3 83.04 Jeffrey M 13 62.5 84.05 John M 12 59.0 99.5,三、R语言的数据结构,如果一个列表的各个成分满足数据框成分的要求,它可以用as.data.frame()函数强制转换为数据框。比如 Lst-list (+ Name=c(Alice,Becka,James,Jeffrey,John),+ Sex=c(F,F,M,M,M),+ Age=c(13,13,12,13,12),+ Height=c(56.5,65.3,57.3,62.5,59.0),+ Weight=c(84.0,98.0,83.0,84.0,99.5)则as.data.frame(Lst)是与df相同的数据框。,三、R语言的数据结构,一个矩阵可以用data.frame()转换为一个数据框,如果它原来有列名则其列名被作为数据框的变量名;否则系统自动为矩阵的各列起一个变量名。如 X data.frame(X) X1 X2 X31 1 3 52 2 4 6,思考题:下列说法错误的是()。A数据框和矩阵都是二维的。B数据框的行与列意义不同,而矩阵的行与列只代表数据的位置。C显示数据框时左侧会显示观测值的序号,显示矩阵时只显示矩阵中的数据。D可以用data.frame函数建立数据框,用matrix()函数建立矩阵。,(2)数据框的引用 下标或下标向量引用 df1:2, 3:5 名字或名字向量引用 dfHeight df$Weight 数据框的变量名由属性names定义,此属性一定是非空的。数据框的各行也可以定义名字,可以用rownames属性定义。如names(df)rownames(df)df,三、R语言的数据结构,提取满足条件的子集 subset(df,Sex=“F”) subset(df,Sex=“F” & Height60) subset(df, Weightmean(Weight),三、R语言的数据结构,(3) 数据框添加新变量基本方法df$iWeightdf$iHeightdfhead(df),三、R语言的数据结构,(4) attach()函数数据框的主要用途是保存统计建模的数据。R的统计建模功能都需要以数据框为输入数据。R提供了attach()函数可以把数据框中的变量“连接”到内存中,这样便于数据框数据的调用。例如 attach(df) r-Height/Weight;r,三、R语言的数据结构,后一个语句将在当前工作空间建立一个新变量r,它不会自动进入数据框df中,要把新变量赋值到数据框中,可以用 df$r -Height/Weight取消连接可以调用函数detach()(无参数即可)。attach()除了可以连接数据框,也可以连接列表。,三、R语言的数据结构,(5)数据框的编辑格式:xnew-edit(xold)其中xold是原列表或数据框图,xnew是修改后的列表或数据框。函数edit()也可以对向量,数组或矩阵类型的数据进行修改或编辑。,三、R语言的数据结构,数据框应用例题:查看数据集esoph的帮助信息,显示其主要的描述性统计量,利用pairs()函数绘制散点图。解:esophhelp(esoph)summary(esoph)pairs(esoph),

    注意事项

    本文(R语言ppt课件(简略版).ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开