四种命题及其关系课件.ppt
,1.1.2 四种命题 1.1.3 四种命题间的相互关系,知识回顾,1、命题的概念,2、能指出命题的条件和结论,一般地,在数学中,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.,判断 一个语句是不是命题,关键判断:(1)是否为陈述句;(2)能否判断真假。,命题的基本形式:“若p,则q”的形式,其中p叫做命题的条件,q叫做命题的结论.,下列四个命题中,命题(1)与命题(2)(3)(4)的条件和结论之间分别有什么关系? (1)若f(x)是正弦函数,则f(x)是周期函数; (2)若f(x)是周期函数,则f(x)是正弦函数; (3)若f(x)不是正弦函数,则f(x)不是周期函数; (4)若f(x)不是周期函数,则f(x)不是正弦函数;,(1)若f(x)是正弦函数,则f(x)是周期函数; (2)若f(x)是周期函数,则f(x)是正弦函数;,互逆命题:一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题。其中一个命题叫做原命题,另一个叫做原命题的逆命题。,原命题:,若p,则q.,逆命题:,若q,则p.,(1)若f(x)是正弦函数,则f(x)是周期函数; (3)若f(x)不是正弦函数,则f(x)不是周期函数;,互否命题:如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,我们把这样的两个命题叫做互否命题。如果把其中一个命题叫做原命题,那么另一个叫做原命题的否命题。,原命题:,若p,则q.,否命题:,若p,则q.,(1)若f(x)是正弦函数,则f(x)是周期函数; (4)若f(x)不是周期函数,则f(x)不是正弦函数;,互为逆否命题:如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题。如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题。,原命题:,若p,则q.,逆否命题:,若q,则p.,原命题:,逆命题:,四种命题形式:,否命题:,逆否命题:,若p,则q.,若q,则p.,若p,则q.,若q,则p.,若原命题为“若p,则q”的形式,则它的逆命题、否命题、逆否命题应分别写成什么形式?,四种命题间的相互关系:,原命题若p则q,逆命题若q则p,否命题若p则q,逆否命题若q则p,互逆,互逆,互否,互否,互为 逆否,互为 逆否,原命题的真假与其它三种命题的真假有什么关系?,思考引入,原命题:若ab,则a+cb+c,逆命题:若a+cb+c,则ab,原命题:若四边形是正方形,则四边形两对角线垂直。,逆命题:若四边形两对角线垂直,则四边形是正方形。,原命题:若ab,则ac2bc2,逆命题:若ac2bc2,则ab,原命题:若四边形对角线相等,则四边形是平行四边形。,逆命题:若四边形是平行四边形,则四边形对角线相等。,真,真,真,假,假,真,假,假,判断下列命题的真假,并总结规律。,1.互逆命题的真假关系,二.四种命题的关系,原命题与其逆命题的真假是否存在相关性呢?,结 论 1,原命题的真假和逆命题的真假没有关系。,原命题:若ab,则a+cb+c,否命题:若ab,则a+cb+c,原命题:若四边形是正方形,则四边形两对角线垂直。,否命题:若四边形不是正方形,则四边形两对角线不垂直。,原命题:若ab,则ac2bc2,否命题:若ab,则ac2bc2,原命题:若四边形对角线相等,则四边形是平行四边形。,否命题:若四边形对角线不相等,则四边形不是平行四边形。,真,真,真,假,假,真,假,假,判断下列否命题的真假,并总结规律。,二.四种命题的关系,2.互否命题的真假关系,原命题与其否命题的真假是否存在相关性呢?,结 论 2,原命题的真假和否命题的真假没有关系。,原命题:若ab,则a+cb+c,逆否命题:若a+cb+c,则ab,原命题:若四边形是正方形,则四边形两对角线垂直。,逆否命题:若四边形两对角线不垂直,则四边形不是正方形。,原命题:若ab,则ac2bc2,逆否命题:若ac2bc2,则ab,原命题:若四边形对角线相等,则四边形是平行四边形。,逆否命题:若四边形不是平行四边形,则四边形对角线不相等。,真,真,真,真,假,假,假,假,判断下列逆否命题的真假,并总结规律。,3.互为逆否命题的真假关系,二.四种命题的关系,原命题与其逆否命题的真假是否存在相关性呢?,结 论 3,原命题和逆否命题总是同真同假。,否命题:若ab,则a+cb+c,逆命题:若a+cb+c,则ab,否命题:若四边形是不正方形,则四边形两对角线不垂直。,逆命题:若四边形两对角线垂直,则四边形是正方形。,否命题:若ab,则ac2bc2,逆命题:若ac2bc2,则ab,否命题:若四边形对角线不相等,则四边形不是平行四边形。,逆命题:若四边形是平行四边形,则四边形对角线相等。,真,真,假,假,真,真,假,假,观察下列命题的真假,并总结规律。,二.四种命题的关系,4.否命题和逆命题的真假关系,否命题与其逆命题的真假是否存在相关性呢?,结 论 4,逆命题和否命题总是同真同假。,一般地,四种命题的真假性,有而且仅有下面四种情况:,通过我们做过的例题和练习题,你能从中发现四种命题的真假性间有什么规律吗?,真,真,真,真,真,假,假,假,假,假,假,假,假,真,真,真,(1)两个命题互为逆否命题,它们有相同的真假性; (2)两个命题为互逆命题或互否命题,它们的真假性没有关系。,例1、判断下列说法是否正确。(1)一个命题的逆命题为真,它的逆否命题不一定为真;(2)一个命题的否命题为真,它的逆命题不一定为真。,正确,错误,例练结合,(2) 若其逆命题为真,则其否命题一定为真。但其原命题、逆否命题不一定为真。,(1)原命题与逆否命题同真假。,(2)原命题的逆命题与否命题同真假。,(1) 原命题为真,则其逆否命题一定为真。但其逆命题、否命题不一定为真。,四、命题真假性判断,结论:,(3) 当c0时,若ab,则acbc.,逆命题:当c0时,若acbc,则ab.,否命题:当c0时,若ab,则acbc.,逆否命题:当c0时,若acbc,则ab.,真,真,真,真,(4)四条边相等的四边形是正方形.,改写:若一个四边形的四条边相等,则它是正方形.,逆命题:若一个四边形是正方形,则它的四条边相等.,否命题:若一个四边形的四条边不全相等,则它不是正方形.,逆否命题:若一个四边形不是正方形,则它的四条边 不全相等.,假,真,真,假,观察下面四个命题: (1)若f(x)是正弦函数,则f(x)是周期函数; (2)若f(x)是周期函数,则f(x)是正弦函数; (3)若f(x)不是正弦函数,则f(x)不是周期函数; (4)若f(x)不是周期函数,则f(x)不是正弦函数; 我们已经知道命题(1)与命题(2)(3)(4)之间的关系。你能说出其中任意两个命题之间的相互关系吗?,一般地,四种命题的真假性,有而且仅有下面四种情况:,通过我们做过的例题和练习题,你能从中发现四种命题的真假性间有什么规律吗?,真,真,真,真,真,假,假,假,假,假,假,假,假,真,真,真,(1)两个命题互为逆否命题,它们有相同的真假性; (2)两个命题为互逆命题或互否命题,它们的真假性没有关系。,小结,原命题若p则q,逆命题若q则p,否命题若 p则 q,逆否命题若 q则p,互为逆否 同真同假,互为逆否 同真同假,例 : 设原命题是“当c 0 时,若a b ,则ac bc ”,写出它的逆命题、否命题、逆否命题,并分别判断它们的真假。,解: 逆命题:当c 0 时,若ac bc ,则a b 逆命题为真,否命题:当c 0 时,若a b ,则ac bc 否命题为真,逆否命题:当c 0 时,若ac bc ,则a b 逆否命题为真,一般地,四种命题的真假性,有且仅有下面四种情况:,准确地作出反设(即否定结论)是非常重要的,下面是一些常见的结论的否定形式.,不是,不都是,不大于,大于或等于(不小于),一个也没有,至少有两个,至多有(n-1)个,至少有(n+1)个,存在某x,不成立,存在某x, 成立,练习:1、判断下列说法是否正确: (1)一个命题的逆命题为真,它的逆否命题不一定为真。 (2)一个命题的否命题为真,它的逆命题一定为真。2、如果一个命题的逆命题为假命题,则它的否命题为( ) A. 一定是假命题 B. 不一定是假命题 C. 一定是真命题 D. 有可能是真命题,练习:,课堂小结:,原命题:,逆命题:,否命题:,逆否命题:,若p则q.,若q则p.,若p则q.,若q则p.,1、四种命题形式:,2、四种命题间的相互关系及其真假性的关系:,通过这节课的学习,你学到了那些知识呢?,作业:习题1.1 A组 2-4题,例1 写出下列命题的逆命题、否命题与逆否命题,并判断它们的真假.,逆命题: 若ab=0,则a=0.,否命题:若a0,则ab0.,逆否命题:若ab0,则a0.,真,真,假,假,(1)若a=0,则ab=0,(2) 若a2b2,则ab.,逆命题: 若ab,则a2b2.,否命题:若a2b2,则ab.,逆否命题:若ab,则a2b2.,假,假,假,假,