锐角三角函数(第一课时)课件.ppt
第28章,锐角三角函数,A,B,C,“斜而未倒”,BC=5.2m,AB=54.5m,问题 为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌现测得斜坡与水平面所成角的度数是30,为使出水口的高度为35m,那么需要准备多长的水管?,这个问题可以归结为,在RtABC中,C90, A30,BC35m,求AB,根据“在直角三角形中,30角所对的边等于斜边的一半”,即,可得AB2BC70m,也就是说,需要准备70m长的水管,分析:,情境探究,在上面的问题中,如果使出水口的高度为50m,那么需要准备多长的水管?,结论:在一个直角三角形中,如果一个锐角等于30,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于,A,B,C,50m,30m,B ,C ,AB2B C 250100,在RtABC中,C90,由于A45,所以RtABC是等腰直角三角形,由勾股定理得,因此,即在直角三角形中,当一个锐角等于45时,不管这个直角三角形的大小如何,这个角的对边与斜边的比都等于,如图,任意画一个RtABC,使C90,A45,计算A的对边与斜边的比 ,你能得出什么结论?,A,B,C,综上可知,在一个RtABC中,C90,当A30时,A的对边与斜边的比都等于 ,是一个固定值;当A45时,A的对边与斜边的比都等于 ,也是一个固定值.,一般地,当A 取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?,结论,问题,在图中,由于CC90,AA,所以RtABCRtABC,这就是说,在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,A的对边与斜边的比也是一个固定值,任意画RtABC和RtABC,使得CC90,AA,那么 与 有什么关系你能解释一下吗?,探究,A,B,C,A,B,C,如图,在RtABC中,C90,我们把锐角A的对边与斜边的比叫做A的正弦(sine),记着sinA 即,例如,当A30时,我们有,当A45时,我们有,c,a,b,对边,斜边,正 弦 函 数,例1 如图,在RtABC中,C90,求sinA和sinB的值,解:(1)在RtABC中,,因此,(2)在RtABC中,,因此,A,B,C,A,B,C,3,4,13,例 题 示 范,5,练一练,1.判断对错:,1) 如图 (1) sinA= ( ) (2)sinB= ( ) (3)sinA=0.6m ( ) (4)SinB=0.8 ( ),sinA是一个比值(注意比的顺序),无单位;,2)如图,sinA= ( ),2.在RtABC中,锐角A的对边和斜边同时扩大 100倍,sinA的值( ) A.扩大100倍 B.缩小 C.不变 D.不能确定,C,练一练,根据下图,求sinA和sinB的值,A,B,C,3,5,练习,解: (1)在RtABC中,,因此,根据下图,求sinA和sinB的值,A,B,C,12,5,练习,解: (1)在RtABC中,,因此,根据下图,求sinB的值,A,B,C,n,练习,解: (1)在RtABC中,,因此,m,练习,如图,RtABC中,ACB=90度,CDAB,图中sinB可由哪两条线段比求得。,解:在RtABC中,,在RtBCD中,,因为B=ACD,所以,做一做,请分别计算60度的锐角对边与斜边的比值你能发现什么规律吗?,规律,(1)直角三角形中,锐角大小确定后,这个角的 对边与斜边的比值随之确定;,(2)直角三角形中一个锐角的度数越大,它的 对边与斜边的比值越大,结论,如图,RtABC中,直角边AC、BC小于斜边AB,,所以0sinA 1, 0sinB 1,如果A B,则BCAC ,那么0 sinA sinB 1,1,1,回味无穷,1.锐角三角函数定义:,2.sinA是A的函数.,3.只有不断的思考,才会有新的发现;只有量的变化,才会有质的进步.,Sin300 =,sin45=,作业,在Rt中, 900(1)AB=13,AC=12,求sinA(2)BC=8,AC=15,求sinAsinB(3)AB=10,BC=8,求sinAsinB,