欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    Fractals-and-Chaos-Simplified-for-the-Life-S分形与混沌简化生活的课件.ppt

    • 资源ID:1284806       资源大小:2.74MB        全文页数:161页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Fractals-and-Chaos-Simplified-for-the-Life-S分形与混沌简化生活的课件.ppt

    Introduction to CHAOS,Larry Liebovitch, Ph.D.Florida Atlantic University2019,Introduction to CHAOSLarry Lie,These two sets of data have the same,meanvariancepower spectrum,These two sets of data have th,Fractals-and-Chaos-Simplified-for-the-Life-S分形与混沌简化生活的课件,Data 1,RANDOMrandomx(n) = RND,Data 1RANDOM,CHAOSDeterministicx(n+1) = 3.95 x(n) 1-x(n),Data 2,CHAOSData 2,etc.,etc.,Fractals-and-Chaos-Simplified-for-the-Life-S分形与混沌简化生活的课件,Data 1,RANDOMrandomx(n) = RND,Data 1RANDOM,Data 2,CHAOSdeterministicx(n+1) = 3.95 x(n) 1-x(n),x(n+1),x(n),Data 2CHAOSx(n+1)x(n),Definition,CHAOS,Deterministic,predict that value,these values,DefinitionCHAOSDeterministicpr,CHAOS,Small Number of Variables,x(n+1) = f(x(n), x(n-1), x(n-2),Definition,CHAOSSmall Number of Variables,Definition,CHAOS,Complex Output,DefinitionCHAOSComplex Output,Properties,CHAOS,Phase Space is Low Dimensional,phase space,d , random,d = 1, chaos,PropertiesCHAOSPhase Space is,Properties,CHAOS,Sensitivity to Initial Conditions,nearly identicalinitial values,very differentfinal values,PropertiesCHAOSSensitivity to,Properties,CHAOS,Bifurcations,small change in a parameter,one pattern,another pattern,PropertiesCHAOSBifurcationssma,Time Series,X(t),Y(t),Z(t),embedding,Time SeriesX(t)Y(t)Z(t)embeddi,Phase Space,X(t),Z(t),phase space set,Y(t),Phase SpaceX(t)Z(t)phase Y(t),Attractors in Phase Space,Logistic Equation,X(n+1),X(n),X(n+1) = 3.95 X(n) 1-X(n),Attractors in Phase SpaceLogis,Attractors in Phase Space,Lorenz Equations,X(t),Z(t),Y(t),Attractors in Phase SpaceLoren,X(n+1),X(n),Logistic Equation,phase space,time series,d1,The number of independent variables = smallest integer the fractal dimension of the attractor,d 1, therefore, the equation of the time series that produced this attractor depends on 1 independent variable.,X(n+1)X(n)Logistic Equationpha,Lorenz Equations,phase space,time series,d =2.03,The number of independent variables = smallest integer the fractal dimension of the attractor,d = 2.03, therefore, the equation of the time series that produced this attractor depends on 3 independent variables.,X(t),Z(t),Y(t),X(n+1),n,Lorenz Equationsphase spacetim,Data 1,time series,phase space,d,Since ,the time series was producedby a randommechanism.,d,Data 1time seriesphase spaced,Data 2,time series,phase space,d = 1,Since d = 1,the time series was produced by a deterministicmechanism.,Data 2time seriesphase spaced,Constructed by direct measurement:,Phase Space,Each point in the phase space set has coordinatesX(t), Y(t), Z(t),Measure X(t), Y(t), Z(t),Z(t),X(t),Y(t),Constructed by direct measurem,Constructed from one variable,Phase Space,Takens TheoremTakens 1981 In Dynamical Systems and Turbulence Ed. Rand & Young, Springer-Verlag, pp. 366 - 381,X(t+ t),X(t+2 t),X(t),Each point in thephase space sethas coordinatesX(t), X(t + t), X(t+2 t),Constructed from one variableP,velocity (cm/sec),Position and Velocity of the Surface of a Hair Cell in the Inner Ear,Teich et al. 1989 Acta Otolaryngol (Stockh), Suppl. 467 ;265 - 279,10-1,-10-1,-10-4,3 x 10-5,displacement (cm),stimulus = 171 Hz,velocity (cm/sec)Position and,velocity (cm/sec),Position and Velocity of the Surface of a Hair Cell in the Inner Ear,Teich et al. 1989 Acta Otolaryngol (Stockh), Suppl. 467 ;265 - 279,5 x 10-6,displacement (cm),stimulus = 610 Hz,-3 x 10-2,3 x 10-2,-2 x 10-5,velocity (cm/sec)Position and,Data 1,RANDOMx(n) = RND,fractal demension of the phase space set,fractal dimension of phase space set,embedding dimension = number of values of the data taken at a time to produce the phase space set,Data 1RANDOMfractal demension,Data 2,CHAOSdeterministicx(n+1) = 3.95 x(n) 1 - x(n),fractal dimension of phase space set,fractal demension of the phase space set = 1,embedding dimension = number of values of the data taken at a time to produce the phase space set,Data 2CHAOSfractal dimension f,microelectrode,chick heart cell,current source,voltmeter,Chick Heart Cells,v,Glass, Guevara, Blair & Shrier.1984 Phys. Rev. A29:1348 - 1357,microelectrodechick heart cell,Spontaneous Beating, No External Stlimulation,Chick Heart Cells,voltage,time,Spontaneous Beating, Chick Hea,Periodically Stimulated2 stimulations - 1 beat,Chick Heart Cells,2:1,Periodically StimulatedChick H,Chick Heart Cells,1:1,Periodically Stimulated1 stimulation - 1 beat,Chick Heart Cells1:1Periodical,Chick Heart Cells,2:3,Periodically Stimulated2 stimulations - 3 beats,Chick Heart Cells2:3Periodical,periodic stimulation - chaotic response,The Pattern of Beatingof Chick Heart Cells,Glass, Guevara, Blair & Shrier.1984 Phys. Rev. A29:1348 - 1357,periodic stimulation - chaotic,= phase of the beat with respect to the stimulus,The Pattern of Beating of Chick Heart Cells continued,phase vs. previous phase,0.5,0,0.5,1.0,1.0,0,0.5,1.0,i + 1,experiment,i,theory (circle map),= phase of the beat with respe,The Pattern of Beatingof Chick Heart Cells,Glass, Guevara, Belair & Shrier.1984 Phys. Rev. A29:1348 - 1357,Since the phase space set is 1-dimensional, the timing between the beats of thesecells can be described by a deterministic relationship.,The Pattern of BeatingGlass, G,Procedure,Time seriese.g. voltage as a function of timeTurn the Time Series into a Geometric ObjectThis is called embedding.,ProcedureTime series,Procedure,Determine the Topological Properties of this ObjectEspecially, the fractal dimension. High Fractal Dimension = Random = chance Low Fractal Dimension = Chaos = deterministic,ProcedureDetermine the Topolog,The Fractal Dimension is NOT equal to The Fractal Dimension,The Fractal Dimension is NOT,Fractal Dimension:How many new pieces of the Time Series are found when viewed at finer time resolution.,X,time,d,Fractal Dimension:How many ne,Fractal Dimension:The Dimension of the Attractor in Phase Space is related to theNumber of Independent Variables.,X,time,d,x(t),x(t+ t),x(t+2 t),Fractal Dimension:The Dimensi,Mechanism that Generated the Data,Chanced(phase space set),Determinismd(phase space set) = low,Data,x(t),t,?,Mechanism that Generated the D,C O L D,Lorenz1963 J. Atmos. Sci. 20:13-141,Model,HOT,(Rayleigh, Saltzman),C O L DLorenz1963 J. Atmos,Lorenz1963 J. Atmos. Sci. 20:13-141,Equations,Lorenz1963 J. Atmos. Sci. 20:,X = speed of the convective circulation X 0 clockwise, X 0 counterclockwiseY = temperature difference between rising and falling fluid,Equations,Lorenz1963 J. Atmos. Sci. 20:13-141,X = speed of the convective ci,Z = bottom to top temperature minus the linear gradient,Equations,Lorenz1963 J. Atmos. Sci. 20:13-141,Z = bottom to top temperature,Phase Space,Lorenz1963 J. Atmos. Sci. 20:13-141,Z,X,Y,Phase SpaceLorenz1963 J. Atmo,Lorenz Attractor,X 0,X 0,cylinder of air rotating counter-clockwise,cylinder of air rotating clockwise,Lorenz AttractorX 0cyli,IXtop(t) - Xbottom(t)I e t = Liapunov Exponent,Sensitivity to Initial ConditionsLorenz Equations,X(t),X= 1.00001,Initial Condition:,different,same,X(t),X= 1.,0,0,IXtop(t) - Xbottom(t)I e,Deterministic, Non-Chaotic,X(n+1) = f X(n),Accuracy of values computed for X(n):,1.736 2.345 3.2545.455 4.876 4.2343.212,Deterministic, Non-ChaoticX(n+,Deterministic, Chaotic,X(n+1) = f X(n),Accuracy of values computed for X(n):,3.455 3.45? 3.4? 3.? ? ? ?,Deterministic, ChaoticX(n+1) =,Initial Conditions X(t0), Y(t0), Z(t0).,Clockwork Universedetermimistic non-chaotic,Cancomputeall futureX(t), Y(t), Z(t).,Equations,Initial Conditions X(t0), Y(t,Initial Conditions X(t0), Y(t0), Z(t0).,Chaotic Universedetermimistic chaotic,sensitivityto initial conditions,Can notcomputeall futureX(t), Y(t), Z(t).,Equations,Initial Conditions X(t0), Y(t,Lorenz Strange Attractor,Trajectories from outside:pulled TOWARDS itwhy its called an attractor,starting away:,Lorenz Strange AttractorTrajec,Lorenz Strange Attractor,Trajectories on the attractor:pushed APART from each othersensitivity to initial conditions,starting on:,Lorenz Strange AttractorTrajec,“Strange”attractor is fractal,phase space set,not strange,strange,“Strange”attractor is fractal,“Chaotic”sensitivity to initial conditions,time series,not chaotic,chaotic,X(t),t,X(t),t,“Chaotic”sensitivity to initi,Shadowing Theorem,If the errors at each integration step are small, there is an EXACT trajectory which lies within a small distance of the errorfull trajectory that we calculated,Shadowing TheoremIf the errors,There is an INFINITE number of trajectories on the attractor. When we go off the attractor, we are sucked back down exponentially fast. Were on an exact trajectory, just not on the one we thought we were on.,Shadowing Theorem,There is an INFINITE number of,4. We are on a “real” trajectory.,3. Pulled backtowards the attractor.,2. Error pushesus offthe attractor.,1. We start here.,Trajectorythat we actuallycompute.,Trajectory that we are trying to compute.,4. We are on a “real” trajecto,Sensitivity to initial conditions means that the conditions of an experiment can be quite similar, but that the results can be quite different.,Sensitivity to initial conditi,TUESDAY,+,10 l,ArT,TUESDAY+10 lArT,10 l,WEDNESDAY,ArT,+,10 lWEDNESDAYArT+,A = 3.22,X(n),n,X(n + 1) = A X(n) 1 -X (n),A = 3.22X(n)nX(n + 1) = A X(n),A = 3.42,X(n),n,X(n + 1) = A X(n) 1 -X (n),A = 3.42X(n)nX(n + 1) = A X(n),A = 3.62,X(n),n,Bifurcation,A = 3.62X(n)nBifurcation,Start with one value of A. Start with x(1) = 0.5. Use the equation to compute x(2) from x(1). Use the equation to compute x(3) from x(2) and so on. up to x(300).,x(n + 1) = A x(n) 1 -x(n),Start with one value of A.x(n,Ignore x(1) to x(50), these are the transient values off of the attractor. Plot x(51) to x(300) on the Y-axis over the value of A on the X-axis. Change the value of A, and repeat the procedure again.,x(n + 1) = A x(n) 1 -x(n),Ignore x(1) to x(50), thesex(,Sudden changes of the pattern indicate bifurcations ( ),x(n),x(n),Sudden changes of the pattern,The energy in glucose is transfered to ATP. ATP is used as an energy source to drive biochemical reactions.,Glycolysis,+,-,-,The energy in glucose is trans,periodic,TheoryMarkus and Hess 1985 Arch. Biol. Med. Exp. 18:261-271,Glycolysis,time,sugar input,ATP output,chaotic,time,time,time,periodicTheoryGlycolysistimesu,ExperimentsHess and Markus 1987 Trends. Biomed. Sci. 12:45-48,cell-free extracts from bakers yeast,Glycolysis,ATP measured by fluorescence glucose input,time,Experimentscell-free extracts,ExperimentsHess and Markus 1987 Trends. Biomed. Sci. 12:45-48,Periodic,fluorescence,Glycolysis,Vin,ExperimentsPeriodicfluorescenc,Glycolysis,ExperimentsHess and Markus 1987 Trends. Biomed. Sci. 12:45-48,Chaotic,20 min,GlycolysisExperimentsChaotic20,GlycolysisMarkus et al. 1985. Biophys. Chem 22:95-105,Bifurcation Diagram,chaos,theory,experiment,GlycolysisBifurcation Diagramc,GlycolysisMarkus et al. 1985. Biophys. Chem 22:95-105,ADP measured at the same phase each time of the input sugar flow cycle(ATP is related to ADP),period of the input sugar flow cycle,# =,period of the ATP concentration,frequency of the input sugar flow cycle,GlycolysisADP measured at peri,Phase TransitionsHaken 1983 Synergetics: An Introduction Springer-Verlag Kelso 2019 Dynamic Patterns MIT Press,Tap the left index fingerin-phase with the tickof the metronome.,Try to tap the right index finger out-of-phase with the tick of the metronome.,Phase TransitionsTap the left,Phase TransitionsHaken 1983 Synergetics: An Introduction Springer-Verlag Kelso 2019 Dynamic Patterns MIT Press,As the frequency of the metronome increases, the right finger shifts from out-of-phase to in-phase motion.,Phase TransitionsAs the freque,Position of Right Index FingerPosition of Left Index Finger,A. TIME SERIES,Phase TransitionsHaken 1983 Synergetics: An Introduction Springer-Verlag Kelso 2019 Dynamic Patterns MIT Press,ADD,ABD,Position of Right Index Finger,Position of Right Index Finger,360o,0o,B. POINT ESTIMATE OF RELATIVE PHASE,180o,Self-Organized Phase TransitionsHaken 1983 Synergetics: An Introduction Springer-Verlag Kelso 2019 Dynamic Patterns MIT Press,2 sec,Position of Right Index Finger,This bifurcation can be explained as a change in a potential energy function similar to the change which occurs in a physical phase transition.,system potential,scaling parameter,Phase TransitionHaken 1983 Synergetics: An Introduction Springer-Verlag Kelso 2019 Dynamic Patterns MIT Press,This bifurcation can be explai,Small changes in parameters can produce large changes in behavior.,+,10cc ArT,+,9cc ArT,Small changes in parameters ca,Bifurcations can be used to test if a system is deterministic.,Deterministic Mathematical Model,Experiment,observed bifurcations,predicted bifurcations,Match ?,Bifurcations can be used to te,The fractal dimension of the phase space set tells us if the data was generated by a random or deterministic mechanism.,ExperimentalData,x(t),t,The fractal dimension of the p,X(t+ t),Phase SpaceSet,X(t),The fractal dimension of the phase space set tells us if the data was generated by a random or a deterministic mechanism.,X(t+ t)Phase SpaceX(t)The fr,Mechanism that generated the experimental data.,Deterministic,Random,d = low,d,The fractal dimension of the phase space set tells us if the data was generated by a random or a deterministic mechanism.,Mechanism that generated the e,EpidemicsSchaffer and Kot 1986 Chaos ed. Holden, Princeton Univ. Press,4000,15000,0,0,measles,New York,time series:,phase space:,chickenpox,Epidemics40001500000measlesNew,EpidemicsOlsen and Schaffer 1990 Science 249:499-504dimension of attractor in phase space,measles,chickenpox,Kobenhavn 3.1 3.4 Milwaukee 2.6 3.2St. Louis 2.2 2.7New York 2.7 3.3,EpidemicsmeasleschickenpoxKobe,EpidemicsOlsen and Schaffer 1990 Science 249:499-504,SEIR models - 4 independent variables S susceptible E exposed, but not yet infectious I infectious R recovered,EpidemicsSEIR models - 4 ind,EpidemicsOlsen and Schaffer 1990 Science 249:499-504,Conclusion: measles: chaotic chickenpox: noisy yearly cycle,EpidemicsConclusion:,time series: voltageKaplan and Cohen 1990 Circ. Res. 67:886-892,normal,fibrillation death,D = 1chaos,D = random,Phase spaceV(t), V(t+ t),ElectrocardiogramECG: Electrical recording of the muscle activity of the heart.,8,time series: voltagenormalfibr,time series: voltageBabloyantz and Destexhe 1988 Biol. Cybern. 58:203-211,normal,D = 6chaos,ElectrocardiogramECG: Electrical recording of the muscle activity of the heart.,time series: voltagenormalD =,ElectrocardiogramECG: Electrical recording of the muscle activity of the heart.,time series: time between heartbeatsBabloyantz and Destexhe 1988 Biol. Cybern. 58:203-211,normal,D = 6chaos,fibrillation death,D = 4chaos,induced arrhythmias,D = 3chaos,Evans, Khan, Garfinkel, Kass, Albano, and Diamond 1989 Circ. Suppl. 80:II-134,Zbilut, Mayer-Kress, Sobotka, OToole and Thomas 1989 Biol. Cybern, 61:371-381,Electrocardiogramtime series:,ElectroencephalogramEEG: Electrical recording of the nerve activity of the brain.Mayer-Kress and Layne 1987 Ann. N.Y. Acad. Sci. 504:62-78,time series: V(t),phase space:,D=8 chaos,V(

    注意事项

    本文(Fractals-and-Chaos-Simplified-for-the-Life-S分形与混沌简化生活的课件.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开