欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    平面向量地概念及线性运算.doc

    • 资源ID:1180713       资源大小:438.41KB        全文页数:12页
    • 资源格式: DOC        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    平面向量地概念及线性运算.doc

    §5.1平面向量的概念与线性运算名称定义备注向量既有_又有_的量;向量的大小叫做向量的_(或称_)平面向量是自由向量零向量长度为_的向量;其方向是任意的记作_单位向量长度等于_的向量非零向量a的单位向量为±平行向量方向_或_的非零向量0与任一向量_或共线共线向量_的非零向量又叫做共线向量相等向量长度_且方向_的向量两向量只有相等或不等,不能比拟大小相反向量长度_且方向_的向量0的相反向量为0向量运算定义法如此(或几何意义)运算律加法求两个向量和的运算(1)交换律:ab_.(2)结合律:(ab)c_.减法求a与b的相反向量b的和的运算叫做a与b的差_法如此aba(b)数乘某某数与向量a的积的运算(1)|a|_;(2)当>0时,a的方向与a的方向_;当<0时,a的方向与a的方向_;当0时,a_(a)_;()a_;(ab)_向量a(a0)与b共线的充要条件是存在唯一一个实数,使得_.难点正本疑点清源向量具有大小和方向两个要素.用有向线段表示向量时,与有向线段起点的位置没有关系.同向且等长的有向线段都表示同一向量.或者说长度相等、方向一样的向量是相等的.向量只有相等或不等,而没有谁大谁小之说,即向量不能比拟大小.向量平行包括向量共线和重合的情况,而直线平行不包括共线的情况.因而要利用向量平行证明向量所在直线平行,必须说明这两条直线不重合.的结果为_.ABCD中,E为DC边的中点,且a,b,如此_.3.如下命题:平行向量一定相等;不相等的向量一定不平行;平行于同一个向量的两个向量是共线向量;相等向量一定共线.其中不正确命题的序号是_.D为三角形ABC边BC的中点,点P满足0,如此实数的值为_.O是ABC所在平面内一点,D为BC边中点,且20,那么()A.B.2C.3题型一平面向量的概念辨析例1给出如下命题:假如|a|b|,如此ab;假如A,B,C,D是不共线的四点,如此是四边形ABCD为平行四边形的充要条件;假如ab,bc,如此ac;ab的充要条件是|a|b|且ab.其中正确命题的序号是_.探究提高(1)正确理解向量的相关概念与其含义是解题的关键.(2)相等向量具有传递性,非零向量的平行也具有传递性.(3)共线向量即为平行向量,它们均与起点无关.(4)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象移动混为一谈.(5)非零向量a与的关系是:是a方向上的单位向量.判断如下命题是否正确,不正确的请说明理由.(1)假如向量a与b同向,且|a|>|b|,如此a>b;(2)假如|a|b|,如此a与b的长度相等且方向一样或相反;(3)假如|a|b|,且a与b方向一样,如此ab;(4)由于零向量的方向不确定,故零向量不与任意向量平行;(5)假如向量a与向量b平行,如此向量a与b的方向一样或相反;(6)假如向量与向量是共线向量,如此A,B,C,D四点在一条直线上;(7)起点不同,但方向一样且模相等的几个向量是相等向量;(8)任一向量与它的相反向量不相等.题型二向量的线性运算例2在ABC中,D、E分别为BC、AC边上的中点,G为BE上一点,且GB2GE,设a,b,试用a,b表示,.探究提高(1)解题的关键在于搞清构成三角形的三个问题间的相互关系,能熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.(2)用几个根本向量表示某个向量问题的根本技巧:观察各向量的位置;寻找相应的三角形或多边形;运用法如此找关系;化简结果.在ABC中,E、F分别为AC、AB的中点,BE与CF相交于G点,设a,b,试用a,b表示.题型三平面向量的共线问题例3设两个非零向量a与b不共线,(1)假如ab,2a8b,3(ab),求证:A、B、D三点共线;(2)试确定实数k,使kab和akb共线.探究提高(1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量a、b共线是指存在不全为零的实数1,2,使1a2b0成立,假如1a2b0,当且仅当120时成立,如此向量a、b不共线. 如下列图,ABC中,在AC上取一点N,使得ANAC,在AB上取一点M,使得AMAB,在BN的延长线上取点P,使得NPBN,在CM的延长线上取点Q,使得时,试确定的值.的线性运算问题试题:(14分)如下列图,在ABO中,AD与BC相交于点M,设a,b.试用a和b表示向量.审题视角(1)用向量来表示另外一些向量是用向量解题的根本要领,要尽可能地转化到平行四边形或三角形中去.(2)既然能用a、b表示,那我们不妨设出manb.(3)利用共线定理建立方程,用方程的思想求解.规X解答解设manb,如此manba(m1)anb.ab.3分又A、M、D三点共线,与共线.存在实数t,使得t,即(m1)anbt.5分(m1)anbtatb.,消去t得,m12n,即m2n1.7分又manbaanb,baab.又C、M、B三点共线,与共线.10分存在实数t1,使得t1,anbt1,消去t1得,4mn1.12分由得m,n,ab.14分批阅笔记(1)此题考查了向量的线性运算,知识要点清楚,但解题过程复杂,有一定的难度.(2)学生的易错点是,找不到问题的切入口,亦即想不到利用待定系数法求解.(3)数形结合思想是向量加法、减法运算的核心,向量是一个几何量,是有“形A、M、D共线和B、M、C共线这个几何特征.(4)方程思想是解决此题的关键,要注意体会.方法与技巧1.将向量用其它向量(特别是基向量)线性表示,是十分重要的技能,也是向量坐标形式的根底.且AB与CD不共线,如此ABCD;假如,如此A、B、C三点共线.失误与防X1.解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是要考虑向量的方向;二是考虑零向量是否也满足条件.要特别注意零向量的特殊性.2.在利用向量减法时,易弄错两向量的顺序,从而求得所求向量的相反向量,导致错误.§5.1平面向量的概念与线性运算(时间:60分钟)A组专项根底训练题组一、选择题1.给出如下命题:两个具有公共终点的向量,一定是共线向量;两个向量不能比拟大小,但它们的模能比拟大小;a0 (为实数),如此必为零;,为实数,假如ab,如此a与b共线.其中错误命题的个数为()P是ABC所在平面内的一点,2,如此()A.0B.0C.0D.0a,b不共线,ckab (kR),dab.如果cd,那么()A.k1且c与d同向B.k1且c与d反向C.k1且c与d同向D.k1且c与d反向二、填空题a、b是两个不共线向量,2apb,ab,a2b,假如A、B、D三点共线,如此实数p的值为_.ABCD中,E和F分别是边CD和BC的中点,假如,其中,R,如此_.6.如图,在ABC中,P是BN上的一点,假如m,如此实数m的值为_.三、解答题7.如图,以向量a,b为边作OADB,用a、b表示、.a,b是两个不共线的非零向量,a与b起点一样,如此当t为何值时,a,tb,(ab)三向量的终点在同一条直线上?B组专项能力提升题组一、选择题P是ABC所在平面内的一点,假如,其中R,如此点P一定在()A.ABC的内部B.AC边所在直线上C.AB边所在直线上D.BC边所在直线上ABC和点M满足0,假如存在实数m使得m成立,如此m等于()3.O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足:,0,),如此P的轨迹一定通过ABC的()二、填空题a,b是两个非零向量,如此在如下四个条件中,能使a、b共线的条件是_(将正确的序号填在横线上).2a3b4e,且a2b3e;存在相异实数、,使·a·b0;x·ay·b0(实数x,y满足xy0);假如四边形ABCD是梯形,如此与共线.5.如下列图,在ABC中,点O是BC的中点.过点O的直线分别交直线AB、AC于不同的两点M、N,假如m,n,如此mn的值为_.ABC中,D是AB边上一点,假如2,如此_.xya与圆x2y24交于A、B两点,且|,其中O为坐标原点,如此实数a的值为_.三、解答题G是ABO的重心,M是AB边的中点.(1)求;(2)假如PQ过ABO的重心G,且a,b,ma,nb,求证:3.答案要点梳理1.大小方向长度模零01个单位一样相反方向一样或相反平行相等一样相等相反2.三角形平行四边形(1)ba(2)a(bc)三角形(1)|a|(2)一样相反0aaaab3.ba根底自测1.2.ba3.题型分类·深度剖析例1变式训练1解(1)不正确,因为向量只讨论相等和不等,而不能比拟大小.(2)不正确,因为向量模相等与向量的方向无关.(3)正确.(4)不正确,因为规定零向量与任意向量平行.(5)不正确,因为两者中假如有零向量,零向量的方向是任意的.(6)不正确,因为与共线,而AB与CD可以不共线即ABCD.(7)正确.(8)不正确,因为零向量可以与它的相反向量相等.例2解()ab;()()ab.变式训练2解()()(1)(1)ab.又m()(1m)a(1m)b,解得m,ab.例3(1)证明ab,2a8b,3(ab),2a8b3(ab)2a8b3a3b5(ab)5.、共线,又它们有公共点B,A、B、D三点共线.(2)解kab与akb共线,存在实数,使kab(akb),即kabakb.(k)a(k1)b.a、b是不共线的两个非零向量,kk10,k210.k±1.变式训练3课时规X训练A组1.C2.B3.D4.15.6.7.解ab,ab,ab.又ab,(ab).ababab.即ab,ab,ab.8.解设a,tb,(ab),ab,tba.要使A、B、C三点共线,只需.即abtba.有当t时,三向量终点在同一直线上.B组1.B2.B3.B4.6.7.±28.(1)解2,又2,0.(2)证明显然(ab).因为G是ABO的重心,所以(ab).由P、G、Q三点共线,得,所以,有且只有一个实数,使.而(ab)maab,nb(ab)ab,所以ab.又因为a、b不共线,所以,消去,整理得3mnmn,故3.

    注意事项

    本文(平面向量地概念及线性运算.doc)为本站会员(李司机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开