欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    实用电子技术基础模拟电路数字电路.doc

    • 资源ID:1131940       资源大小:1.09MB        全文页数:43页
    • 资源格式: DOC        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    实用电子技术基础模拟电路数字电路.doc

    如何看懂电路图电源电路单元一X电路图通常有几十乃至几百个元器件,它们的连线纵横交叉,形式变化多端,初学者往往不知道该从什么地方开始, 怎样才能读懂它。其实电子电路本身有很强的规律性,不管多复杂的电路,经过分析可以发现,它是由少数几个单元电路组成的。好象孩子们玩的积木,虽然只有十 来种或二三十种块块,可是在孩子们手中却可以搭成几十乃至几百种平面图形或立体模型。同样道理,再复杂的电路,经过分析就可发现,它也是由少数几个单元电 路组成的。因此初学者只要先熟悉常用的根本单元电路,再学会分析和分解电路的本领,看懂一般的电路图应该是不难的。按单元电路的功能可以把它们分成假如干类,每一类又有好多种,全部单元电路大概总有几百种。下面我们选最常用的根本单元电路来介绍。让我们从电源电路开始。一、电源电路的功能和组成每 个电子设备都有一个供应能量的电源电路。电源电路有整流电源、逆变电源和变频器三种。常见的家用电器中多数要用到直流电源。直流电源的最简单的供电方法是 用电池。但电池有本钱高、体积大、需要不时更换蓄电池如此要经常充电的缺点,因此最经济可靠而又方便的是使用整流电源。电 子电路中的电源一般是低压直流电,所以要想从 220 伏市电变换成直流电,应该先把 220 伏交流变成低压交流电,再用整流电路变成脉动的直流电,最后用滤波电路滤除脉动直流电中的交流成分后才能得到直流电。有的电子设备对电源的质量要求很高, 所以有时还需要再增加一个稳压电路。因此整流电源的组成一般有四大局部,见图 1 。其中变压电路其实就是一个铁芯变压器,需要介绍的只是后面三种单元电路。二、整流电路整流电路是利用半导体二极管的单向导电性能把交流电变成单向脉动直流电的电路。 1 半波整流半波整流电路只需一个二极管,见图 2 a 。在交流电正半周时 VD 导通,负半周时 VD 截止,负载 R 上得到的是脉动的直流电 2 全波整流全波整流要用两个二极管,而且要求变压器有带中心抽头的两个圈数一样的次级线圈,见图 2 b 。负载 R L 上得到的是脉动的全波整流电流,输出电压比半波整流电路高。 3 全波桥式整流用 4 个二极管组成的桥式整流电路可以使用只有单个次级线圈的变压器,见图 2 c 。负载上的电流波形和输出电压值与全波整流电路一样。 4 倍压整流用多个二极管和 电容器可以获得较高的直流电压。图 2 d 是一个二倍压整流电路。当 U2 为负半周时 VD1 导通, C1 被充电, C1 上最高电压可接近 1.4U2 ;当 U2 正半周时 VD2 导通, C1 上的电压和 U2 叠加在一起对 C2 充电,使 C2 上电压接近 2.8U2 ,是 C1 上电压的 2 倍,所以叫倍压整流电路。三、滤波电路整流后得到的是脉动直流电,如果加上滤波电路滤除脉动直流电中的交流成分,就可得到平滑的直流电。  1 电容滤波    把电容器和负载并联,如图 3 a ,正半周时电容被充电,负半周时电容放电,就可使负载上得到平滑的直流电。    2 电感滤波    把电感和负载串联起来,如图 3 b ,也能滤除脉动电流中的交流成分。    3 L 、 C 滤波    用 1 个电感和 1 个电容组成的滤波电路因为象一个倒写的字母“ L ,被称为 L 型,见图 3 c 。用 1 个电感和 2 个电容的滤波电路因为象字母“,被称为 型,见图 3 d ,这是滤波效果较好的电路。    4 RC 滤波   电感器的本钱高、体积大,所以在电流不太大的电子电路中常用电阻器取代电感器而组成 RC 滤波电路。同样,它也有 L 型,见图 3 e ; 型,见图 3 f 。四、稳压电路    交流电网电压的波动和负载电流的变化都会使整流电源的输出电压和电流随之变动,因此要求较高的电子电路必须使用稳压电源。    (1 稳压管并联稳压电路    用一个稳压管和负载并联的电路是最简单的稳压电路,见图 4 a 。图中 R 是限流电阻。这个电路的输出电流很小,它的输出电压等于稳压管的稳定电压值 V Z 。    (2 串联型稳压电路    有放大和负反应作用的串联型稳压电路是最常用的稳压电路。它的电路和框图见图 4 b 、 c 。它是从取样电路 R3 、 R4 中检测出输出电压的变动,与基准电压 V Z 比拟并经放大器 VT2 放大后加到调整管 VT1 上,使调整管两端的电压随着变化。如果输出电压下降,就使调整管管压降也降低,于是输出电压被提升;如果输出电压上升,就使调整管管压降也上升,于是输 出电压被压低,结果就使输出电压根本不变。在这个电路的根底上开展成很多变型电路或增加一些辅助电路,如用复合管作调整管,输出电压可调的电路,用运算放 大器作比拟放大的电路,以与增加辅助电源和过流保护电路等。    3 开关型稳压电路    近年来广泛应用的新型稳压电源是开关型稳压电源。它的调整管工作在开关状态,本身功耗很小,所以有效率高、体积小等优点,但电路比拟复杂。    开关稳压电源从原理上分有很多种。它的根本原理框图见图 4 d 。图中电感 L 和电容 C 是储能和滤波元件,二极管 VD 是调整管在关断状态时为 L 、 C 滤波器提供电流通路的续流二极管。开关稳压电源的开关频率都很高,一般为几几十千赫,所以电感器的体积不很大,输出电压中的高次谐波也不多。    它的根本工作原理是 : 从取样电路 R3 、 R4 中检测出取样电压经比拟放大后去控制一个矩形波发生器。矩形波发生器的输出脉冲是控制调整管 VT 的导通和截止时间的。如果输出电压 U 0 因为电网电压或负载电流的变动而降低,就会使矩形波发生器的输出脉冲变宽,于是调整管导通时间增大,使 L 、 C 储能电路得到更多的能量,结果是使输出电压 U 0 被提升,达到了稳定输出电压的目的。    4 集成化稳压电路    近年来已有大量集成稳压器产品问世,品种很多,结构也各不一样。目前用得较多的有三端集成稳压器,有输出正电压的 CW7800 系列和输出负电压的 CW7900 系列等产品。输出电流从 0.1A 3A ,输出电压有 5V 、 6V 、 9V 、 12V 、 15V 、 18V 、 24V 等多种。    这种集成稳压器只有三个端子,稳压电路的所有局部包括大功率调整管以与保护电路等都已集成在芯片内。使用时只要加上散热片后接到整流滤波电路后面就行了。外围元件少,稳压精度高,工作可靠,一般不需调试。    图 4 e 是一个三端稳压器电路。图中 C 是主滤波电容, C1 、 C2 是消除寄生振荡的电容 ,VD 是为防止输入短路烧坏集成块而使用的保护二极管。五、电源电路读图要点和举例    电源电路是电子电路中比拟简单然而却是应用最广的电路。拿到一X电源电路图时,应该: 先按“整流 滤波 稳压的次序把整个电源电路分解开来,逐级细细分析。 逐级分析时要分清主电路和辅助电路、主要元件和次要元件,弄清它们的作用和参数要求等。例如开关稳压电源中,电感电容和续流二极管就是它的关键元件。 因为晶体管有 NPN 和 PNP 型两类,某些集成电路要求双电源供电,所以一个电源电路往往包括有不同极性不同电压值和好几组输出。读图时必须分清各组输出电压的数值和极性。在组装和维 修时也要仔细分清晶体管和电解电容的极性,防止出错。 熟悉某些习惯画法和简化画法。 最后把整个电源电路从前到后全面综合贯穿起来。这X电源电路图也就读懂了。    例 1 电热毯控温电路    图 5 是一个电热毯电路。开关在“ 1 的位置是低温档。 220 伏市电经二极管后接到电热毯,因为是半波整流,电热毯两端所加的是约 100 伏的脉动直流电,发热不高,所以是保温或低温状态。开关扳到“ 2 的位置, 220 伏市电直接接到电热毯上,所以是高温档。    例 2 高压电子灭蚊蝇器    图 6 是利用倍压整流原理得到小电流直流高压电的灭蚊蝇器。 220 伏交流经过四倍压整流后输出电压可达 1100 伏,把这个直流高压加到平行的金属丝网上。网下放诱饵,当苍蝇停在网上时造成短路,电容器上的高压通过苍蝇身体放电把蝇击毙。苍蝇尸体落下后,电容器又被 充电,电网又恢复高压。这个高压电网电流很小,因此对人无害。    由于昆虫夜间有趋光性,因此如在这电网后面放一个 3 瓦荧光灯或小型黑光灯,就可以诱杀蚊虫和有害昆虫。    例 3 实用稳压电源    图 7 是一个实用的稳压电源。输出电压 3 9 伏可调,输出电流最大 100 毫安。这个电路就是串联型稳压电源电路。要注意的是 : 整流桥的画法和图 2 c 不同,实际上它就是桥式整流电路。 这个电路使用 PNP 型锗管,所以输出是负电压,正极接地。 用两个普通二极管代替稳压管。任何二极管的正向压降都是根本不变的,因此可用二极管代替稳压管。 2AP 型二极管的正向压降约是 0.3 伏, 2CP 型约是 0.7 伏, 2CZ 型约是 1 伏。图中用了两个 2CZ 二极管作基准电压。 取样电阻是一个电位器,所以输出电压是可调的。能够把微弱的信号放大的电路叫做放大电路或放大器。例如助听器里的关键部件就是一个放大器。     放大电路的用途和组成     放大器有交流放大器和直流放大器。交流放大器又可按频率分为低频、中源和高频;接输出信号强弱分成电压放大、功率放大等。此外还有用集成运算放大器和特殊 晶体管作器件的放大器。它是电子电路中最复杂多变的电路。但初学者经常遇到的也只是少数几种较为典型的放大电路。    读放大电路图时也还是按照“逐级分解、抓住关键、细致分析、全面综合的原如此和步骤进展。首先把整个放大电路按输入、输出逐级分开,然后逐级抓住关键进展 分析弄通原理。放大电路有它本身的特点:一是有静态和动态两种工作状态,所以有时往往要画出它的直流通路和交流通路才能进展分析;二是电路往往加有负反 馈,这种反应有时在本级内,有时是从后级反应到前级,所以在分析这一级时还要能“瞻前顾后。在弄通每一级的原理之后就可以把整个电路串通起来进展全面综 合。    下面我们介绍几种常见的放大电路。   低频电压放大器    低频电压放大器是指工作频率在 20 赫 20 千赫之间、输出要求有一定电压值而不要求很强的电流的放大器。    1 共发射极放大电路    图 1 a 是共发射极放大电路。 C1 是输入电容, C2 是输出电容,三极管 VT 就是起放大作用的器件, RB 是基极偏置电阻 ,RC 是集电极负载电阻。 1 、 3 端是输入, 2 、 3 端是输出。 3 端是公共点,通常是接地的,也称“地端。静态时的直流通路见图 1 b ,动态时交流通路见图 1 c 。电路的特点是电压放大倍数从十几到一百多,输出电压的相位和输入电压是相反的,性能不够稳定,可用于一般场合。    2 分压式偏置共发射极放大电路    图 2 比图 1 多用 3 个元件。基极电压是由 RB1 和 RB2 分压取得的,所以称为分压偏置。发射极中增加电阻 RE 和电容 CE , CE 称交流旁路电容,对交流是短路的; RE 如此有直流负反应作用。所谓反应是指把输出的变化通过某种方式送到输入端,作为输入的一局部。如果送回局部和原来的输入局部是相减的,就是负反应。图中基极 真正的输入电压是 RB2 上电压和 RE 上电压的差值,所以是负反应。由于采取了上面两个措施,使电路工作稳定性能提高,是应用最广的放大电路。 3 射极输出器     图 3 a 是一个射极输出器。它的输出电压是从射极输出的。图 3 b 是它的交流通路图,可以看到它是共集电极放大电路。    这个图中,晶体管真正的输入是 V i 和 V o 的差值,所以这是一个交流负反应很深的电路。由于很深的负反应,这个电路的特点是:电压放大倍数小于 1 而接近 1 ,输出电压和输入电压同相,输入阻抗高输出阻抗低,失真小,频带宽,工作稳定。它经常被用作放大器的输入级、输出级或作阻抗匹配之用。    4 低频放大器的耦合    一个放大器通常有好几级,级与级之间的联系就称为耦合。放大器的级间耦合方式有三种: RC 耦合,见图 4 a 。优点是简单、本钱低。但性能不是最优。 变压器耦合,见图 4 b 。优点是阻抗匹配好、输出功率和效率高,但变压器制作比拟麻烦。 直接耦合,见图 4 c 。优点是频带宽,可作直流放大器使用,但前后级工作有牵制,稳定性差,设计制作较麻烦。功率放大器    能把输入信号放大并向负载提供足够大的功率的放大器叫功率放大器。例如收音机的末级放大器就是功率放大器。    1 甲类单管功率放大器    图 5 是单管功率放大器, C1 是输入电容, T 是输出变压器。它的集电极负载电阻 Ri 是将负载电阻 R L 通过变压器匝数比折算过来的:    RC= N1 N2 2 RL=N 2 RL    负载电阻是低阻抗的扬声器,用变压器可以起阻抗变换作用,使负载得到较大的功率。    这个电路不管有没有输入信号,晶体管始终处于导通状态,静态电流比拟大,困此集电极损耗较大,效率不高,大约只有 35 。这种工作状态被称为甲类工作状态。这种电路一般用在功率不太大的场合,它的输入方式可以是变压器耦合也可以是 RC 耦合。 2 乙类推挽功率放大器     图 6 是常用的乙类推挽功率放大电路。它由两个特性一样的晶体管组成对称电路,在没有输入信号时,每个管子都处于截止状态,静态电流几乎是零,只有在有信号输入 时管子才导通,这种状态称为乙类工作状态。当输入信号是正弦波时,正半周时 VT1 导通 VT2 截止,负半周时 VT2 导通 VT1 截止。两个管子交替出现的电流在输出变压器中合成,使负载上得到纯正的正弦波。这种两管交替工作的形式叫做推挽电路。    乙类推挽放大器的输出功率较大,失真也小,效率也较高,一般可达 60 。    3 OTL 功率放大器    目前广泛应用的无变压器乙类推挽放大器,简称 OTL 电路,是一种性能很好的功率放大器。为了易于说明,先介绍一个有输入变压器没有输出变压器的 OTL 电路,如图 7 。    这个电路使用两个特性一样的晶体管,两组偏置电阻和发射极电阻的阻值也一样。在静态时, VT1 、 VT2 流过的电流很小,电容 C 上充有对地为 1 2 E c 的直流电压。在有输入信号时,正半周时 VT1 导通, VT2 截止,集电极电流 i c1 方向如下列图,负载 RL 上得到放大了的正半周输出信号。负半周时 VT1 截止, VT2 导通,集电极电流 i c2 的方向如下列图, RL 上得到放大了的负半周输出信号。这个电路的关键元件是电容器 C ,它上面的电压就相当于 VT2 的供电电压。    以这个电路为根底,还有用三极管倒相的不用输入变压器的真正 OTL 电路,用 PNP 管和 NPN 管组成的互补对称式 OTL 电路,以与最新的桥接推挽功率放大器,简称 BTL 电路等等。直流放大器    能够放大直流信号或变化很缓慢的信号的电路称为直流放大电路或直流放大器。测量和控制方面常用到这种放大器。    1 双管直耦放大器    直流放大器不能用 RC 耦合或变压器耦合,只能用直接耦合方式。图 8 是一个两级直耦放大器。直耦方式会带来前后级工作点的相互牵制,电路中在 VT2 的发射极加电阻 R E 以提高后级发射极电位来解决前后级的牵制。直流放大器的另一个更重要的问题是零点漂移。所谓零点漂移是指放大器在没有输入信号时,由于工作点不稳定引起静 态电位缓慢地变化,这种变化被逐级放大,使输出端产生虚假信号。放大器级数越多,零点漂移越严重。所以这种双管直耦放大器只能用于要求不高的场合。    2 差分放大器    解决零点漂移的方法是采用差分放大器,图 9 是应用较广的射极耦合差分放大器。它使用双电源,其中 VT1 和 VT2 的特性一样,两组电阻数值也一样, R E 有负反应作用。实际上这是一个桥形电路,两个 R C 和两个管子是四个桥臂,输出电压 V 0 从电桥的对角线上取出。没有输入信号时,因为 RC1=RC2 和两管特性一样,所以电桥是平衡的,输出是零。由于是接成桥形,零点漂移也很小。    差分放大器有良好的稳定性,因此得到广泛的应用。集成运算放大器    集成运算放大器是一种把多级直流放大器做在一个集成片上,只要在外部接少量元件就能完成各种功能的器件。因为它早期是用在模拟计算机中做加法器、乘法器用 的,所以叫做运算放大器。它有十多个引脚,一般都用有 3 个端子的三角形符号表示,如图 10 。它有两个输入端、 1 个输出端,上面那个输入端叫做反相输入端,用“作标记;下面的叫同相输入端,用“作标记。    集成运算放大器可以完成加、减、乘、除、微分、积分等多种模拟运算,也可以接成交流或直流放大器应用。在作放大器应用时有:    1 带调零的同相输出放大电路    图 11 是带调零端的同相输出运放电路。引脚 1 、 11 、 12 是调零端,调整 RP 可使输出端 8 在静态时输出电压为零。 9 、 6 两脚分别接正、负电源。输入信号接到同相输入端 5 ,因此输出信号和输入信号同相。放大器负反应经反应电阻 R2 接到反相输入端 4 。同相输入接法的电压放大倍数总是大于 1 的。 2 反相输出运放电路    也可以使输入信号从反相输入端接入,如图 12 。如对电路要求不高,可以不用调零,这时可以把 3 个调零端短路。    输入信号从耦合电容 C1 经 R1 接入反相输入端,而同相输入端通过电阻 R3 接地。反相输入接法的电压放大倍数可以大于 1 、等于 1 或小于 1 。    3 同相输出高输入阻抗运放电路    图 13 中没有接入 R1 ,相当于 R1 阻值无穷大,这时电路的电压放大倍数等于 1 ,输入阻抗可达几百千欧。  放大电路读图要点和举例    放大电路是电子电路中变化较多和较复杂的电路。在拿到一X放大电路图时,首先要把它逐级分解开,然后一级一级分析弄懂它的原理,最后再全面综合。读图时要 注意: 在逐级分析时要区分开主要元器件和辅助元器件。放大器中使用的辅助元器件很多,如偏置电路中的温度补偿元件,稳压稳流元器件,防止自激振荡的防振元件、去 耦元件,保护电路中的保护元件等。 在分析中最主要和困难的是反应的分析,要能找出反应通路,判断反应的极性和类型,特别是多级放大器,往往以后级将负反应加到前级,因此更要细致分析。 一般低频放大器常用 RC 耦合方式;高频放大器如此常常是和 LC 调谐电路有关的,或是用单调谐或是用双调谐电路,而且电路里使用的电容器容量一般也比拟小。 注意晶体管和电源的极性,放大器中常常使用双电源,这是放大电路的特殊性。    例 1 助听器电路    图 14 是一个助听器电路,实际上是一个 4 级低频放大器。 VT1 、 VT2 之间和 VT3 、 VT4 之间采用直接耦合方式, VT2 和 VT3 之间如此用 RC 耦合。为了改善音质, VT1 和 VT3 的本级有并联电压负反应 R2 和 R7 。由于使用高阻抗的耳机,所以可以把耳机直接接在 VT4 的集电极回路内。 R6 、 C2 是去耦电路, C6 是电源滤波电容。振荡电路的用途和振荡条件    不需要外加信号就能自动地把直流电能转换成具有一定振幅和一定频率的交流信号的电路就称为振荡电路或振荡器。这种现象也叫做自激振荡。或者说,能够产生交流信号的电路就叫做振荡电路。    一个振荡器必须包括三局部:放大器、正反应电路和选频网络。放大器能对振荡器输入端所加的输入信号予以放大使输出信号保持恒定的数值。正反应电路保证向振 荡器输入端提供的反应信号是相位一样的,只有这样才能使振荡维持下去。选频网络如此只允许某个特定频率 f 0 能通过,使振荡器产生单一频率的输出。    振荡器能不能振荡起来并维持稳定的输出是由以下两个条件决定的;一个是反应电压 u f 和输入电压 U i 要相等,这是振幅平衡条件。二是 u f 和 u i 必须相位一样,这是相位平衡条件,也就是说必须保证是正反应。一般情况下,振幅平衡条件往往容易做到,所以在判断一个振荡电路能否振荡,主要是看它的相位 平衡条件是否成立。    振荡器按振荡频率的上下可分成超低频 20 赫以下、低频 20 赫 200 千赫、高频 200 千赫 30 兆赫和超高频 10 兆赫 350 兆赫等几种。按振荡波形可分成正弦波振荡和非正弦波振荡两类。    正弦波振荡器按照选频网络所用的元件可以分成 LC 振荡器、 RC 振荡器和石英晶体振荡器三种。石英晶体振荡器有很高的频率稳定度,只在要求很高的场合使用。在一般家用电器中,大量使用着各种 L C 振荡器和 RG 振荡器。    LC 振荡器     LC 振荡器的选频网络是 LC 谐振电路。它们的振荡频率都比拟高,常见电路有 3 种。    1 变压器反应 LC 振荡电路    图 1 a 是变压器反应 LC 振荡电路。晶体管 VT 是共发射极放大器。变压器 T 的初级是起选频作用的 LC 谐振电路,变压器 T 的次级向放大器输入提供正反应信号。接通电源时, LC 回路中出现微弱的瞬变电流,但是只有频率和回路谐振频率 f 0 一样的电流才能在回路两端产生较高的电压,这个电压通过变压器初次级 L1 、 L2 的耦合又送回到晶体管 V 的基极。从图 1 b 看到,只要接法没有错误,这个反应信号电压是和输入信号电压相位一样的,也就是说,它是正反应。因此电路的振荡迅速加强并最后稳定下来。    变压器反应 LC 振荡电路的特点是:频率X围宽、容易起振,但频率稳定度不高。它的振荡频率是: f 0 =1 2 LC 。常用于产生几十千赫到几十兆赫的正弦波信号。    2 电感三点式振荡电路    图 2 a 是另一种常用的电感三点式振荡电路。图中电感 L1 、 L2 和电容 C 组成起选频作用的谐振电路。从 L2 上取出反应电压加到晶体管 VT 的基极。从图 2 b 看到,晶体管的输入电压和反应电压是同相的,满足相位平衡条件的,因此电路能起振。由于晶体管的 3 个极是分别接在电感的 3 个点上的,因此被称为电感三点式振荡电路。    电感三点式振荡电路的特点是:频率X围宽、容易起振,但输出含有较多高次调波,波形较差。它的振荡频率是: f 0 =1/2 LC ,其中 L=L1 L2 2M 。常用于产生几十兆赫以下的正弦波信号。 3 电容三点式振荡电路    还有一种常用的振荡电路是电容三点式振荡电路,见图 3 a 。图中电感 L 和电容 C1 、 C2 组成起选频作用的谐振电路,从电容 C2 上取出反应电压加到晶体管 VT 的基极。从图 3 b 看到,晶体管的输入电压和反应电压同相,满足相位平衡条件,因此电路能起振。由于电路中晶体管的 3 个极分别接在电容 C1 、 C2 的 3 个点上,因此被称为电容三点式振荡电路。    电容三点式振荡电路的特点是:频率稳定度较高,输出波形好,频率可以高达 100 兆赫以上,但频率调节X围较小,因此适合于作固定频率的振荡器。它的振荡频率是: f 0 =1/2 LC ,其中 C= C 1 C 2 C 1 +C 2 。    上面 3 种振荡电路中的放大器都是用的共发射极电路。共发射极接法的振荡器增益较高,容易起振。也可以把振荡电路中的放大器接成共基极电路形式。共基极接法的振荡器振荡频率比拟高,而且频率稳定性好。   RC 振荡器     RC 振荡器的选频网络是 RC 电路,它们的振荡频率比拟低。常用的电路有两种。    1 RC 相移振荡电路    图 4 a 是 RC 相移振荡电路。电路中的 3 节 RC 网络同时起到选频和正反应的作用。从图 4 b 的交流等效电路看到:因为是单级共发射极放大电路,晶体管 VT 的输出电压 U o 与输出电压 U i 在相位上是相差 180° 。当输出电压经过 RC 网络后,变成反应电压 U f 又送到输入端时,由于 RC 网络只对某个特定频率 f 0 的电压产生 180° 的相移,所以只有频率为 f 0 的信号电压才是正反应而使电路起振。可见 RC 网络既是选频网络,又是正反应电路的一局部。    RC 相移振荡电路的特点是:电路简单、经济,但稳定性不高,而且调节不方便。一般都用作固定频率振荡器和要求不太高的场合。脉冲电路的用途和特点    在电子电路中,电源、放大、振荡和调制电路被称为模拟电子电路,因为它们加工和处理的是连续变化的模拟信号。电子电路中另一大类电路的数字电子电路。它加 工和处理的对象是不连续变化的数字信号。数字电子电路又可分成脉冲电路和数字逻辑电路,它们处理的都是不连续的脉冲信号。脉冲电路是专门用来产生电脉冲和 对电脉冲进展放大、变换和整形的电路。家用电器中的定时器、报警器、电子开关、电子钟表、电子玩具以与电子医疗器具等,都要用到脉冲电路。    电脉冲有各式各样的形状,有矩形、三角形、锯齿形、钟形、阶梯形和尖顶形的,最具有代表性的是矩形脉冲。要说明一个矩形脉冲的特性可以用脉冲幅度 Um 、脉冲周期 T 或频率 f 、脉冲前沿 t r 、脉冲后沿 t f 和脉冲宽度 t k 来表示。如果一个脉冲的宽度 t k =1 2T ,它就是一个方波。    脉冲电路和放大振荡电路最大的不同点,或者说脉冲电路的特点是:脉冲电路中的晶体管是工作在开关状态的。大多数情况下,晶体管是工作在特性曲线的饱和区或 截止区的,所以脉冲电路有时也叫开关电路。    就拿脉冲电路中最常用的反相器电路图 1 来说,从电路形式上看,它和放大电路中的共发射电路很相似。在放大电路中,基极电阻 R b2 是接到正电源上以取得基极偏压;而这个电路中,为了保证电路可靠地截止, R b2 是接到一个负电源上的,而且 R b1 和 R b2 的数值是按晶体管能可靠地进入饱和区或止区的要求计算出来的。不仅如此,为了使晶体管开关速度更快,在基极上还加有加速电容 C ,在脉前沿产生正向尖脉冲可使晶体管快速进入导通并饱和;在脉冲后沿产生负向尖脉冲使晶体管快速进入截止状态。除了射极输出器是个特例,脉冲电路中的晶体管都是工作在开关状态的,这是一个特点。    脉冲电路的另一个特点是一定有电容器用电感较少作关键元件,脉冲的产生、波形的变换都离不开电容器的充放电。产生脉冲的多谐振荡器    脉冲有各种各样的用途,有对电路起开关作用的控制脉冲,有起统帅全局作用的时钟脉冲,有做计数用的计数脉冲,有起触发启动作用的触发脉冲等等。不管是什么 脉冲,都是由脉冲信号发生器产生的,而且大多是短形脉冲或以矩形脉冲为原型变换成的。因为矩形脉冲含有丰富的谐波,所以脉冲信号发生器也叫自激多谐振荡器 或简称多谐振荡器。如果用门来作比喻,多谐振荡器输出端时开时闭的状态可以把多谐振荡器比作宾馆的自动旋转门,它不需要人去推动,总是不停地开门和关门。    1 集基耦合多谐振荡器    图 2 是一个典型的分立元件集基耦合多谐振荡器。它由两个晶体管反相器经 RC 电路交叉耦合接成正反应电路组成。两个电容器交替充放电使两管交替导通和截止,使电路不停地从一个状态自动翻转到另一个状态,形成自激振荡。从 A 点或 B 点可得到输出脉冲。当 R b1 =R b2 =R , C b1 =C b2 =C 时,输出是幅度接近 E 的方波,脉冲周期 T=1.4RC 。如果两边不对称,如此输出是矩形脉冲    3 RC 环形振荡器    图 4 是常用的 RC 环形振荡器。它用奇数个门、首尾相连组成闭环形,环路中有 RC 延时电路。图中 RS 是保护电阻, R 和 C 是延时电路元件,它们的数值决定脉冲周期。输出脉冲周期 T=2.2RC 。如果把 R 换成电位器,就成为脉冲频率可调的多谐振荡器。因为这种电路简单可靠,使用方便,频率X围宽,可以从几赫变化到几兆赫,所以被广泛应用。    脉冲变换和整形电路    脉冲在工作中有时需要变换波形或幅度,如把矩形脉冲变成三角波或尖脉冲等,具有这种功能的电路就叫变换电路。脉冲在传送中会造成失真,因此常常要对波形不好的脉冲进展修整,使它整旧如新,具有这种功能的电路就叫整形电路。 1 微分电路    微分电路是脉冲电路中最常用的波形变换电路,它和放大电路中的 RC 耦合电路很相似,见图 5 。当电路时间常数 =RC<<t k 时,输入矩形脉冲,由于电容器充放电极快,输出可得到一对尖脉冲。输入脉冲前沿如此输出正向尖脉冲,输入脉冲后沿如此输出负向尖脉冲。这种尖脉冲常被用作触发 脉冲或计数脉冲。    2 积分电路    把图 5 中的 R 和 C 互换,并使 =RC>>t k ,电路就成为积分电路,见图 6 。当输入矩形脉冲时,由于电容器充放电很慢,输出得到的是一串幅度较低的近似三角形的脉冲波。    3 限幅器    能限制脉冲幅值的电路称为限幅器或削波器。图 7 是用二极管和电阻组成的上限幅电路。它能把输入的正向脉冲削掉。如果把二极管反接,就成为削掉负脉冲的下限幅电路。    用二极带或三极管等非线性器件可组成各种限幅器,或是变换波形如把输入脉冲变成方波、梯形波、尖脉冲等,或是对脉冲整形如把输入上下不平的脉冲系列削平成为整齐的脉冲系列等。    4 箝位器    能把脉冲电压维持在某个数值上而使波形保持不变的电路称为箝位器。它也是整形电路的一种。例如电视信号在传输过程中会造成失真,为了使脉冲波形恢复原样,接收机里就要用箝位电路把波形顶部箝制在某个固定电平上。    图 8 中反相器输出端上就有一个箝位二极管 VD 。如果没有这个二极管,输出脉冲高电平应该是 12 伏,现在增加了箝位二极管,输出脉冲高电平被箝制在 3 伏上。    此外,象反相器、射极输出器等电路也有“整旧如新的作用,也可认为是整形电路。    有记忆功能的双稳电路多谐振荡器的输出总是时高时低地变换,所以它也叫无稳态电路。另一种双稳态电路就绝然不同,双稳电路有两个输出端,它们总是处于相反 的状态:一个是高电平,另一个必定是低电平。它的特点是如果没有外来的触发,输出状态能一直保持不变。所以常被用作存放二进制数码的单元电路。    1 集基耦合双稳电路    图 9 是用分立元件组成的集基耦合双稳电路。它由一对用电阻交叉耦合的反相器组成。它的两个管子总是一管截止一管饱和,例如当 VT1 管饱和时 VT2 管就截止,这时 A 点是低电平 B 点是高电平。如果没有外来的触发信号,它就保持这种状态不变。如把高电平表示数字信号“ 1 ,低电平表示“ 0 ,那么这时就可以认为双稳电路已经把数字信号“ 1 存放在 B 端了。    电路的基极分别加有微分电路。如果在 VT1 基极加上一个负脉冲称为触发脉冲,就会使 VT1 基极电位下降,由于正反应的作用,使 VT1 很快从饱和转入截止, VT2 从截止转入饱和。于是双稳电路翻转成 A 端为“ 1 , B 端为“ 0 ,并一直保持下去。    2 触发脉冲的触发方式和极性    双稳电路的触发电路形式和触发脉冲极性选择比拟复杂。从触发方式看,因为有直流触发电位触发和交流触发边沿触发的分别,所以触发电路形式各有不 同。从脉冲极性看,也是随着晶体管极性、触发脉冲加在哪个管子饱和管还是截止管上、哪个极上基极还是集电极而变化的。在实际应用中,因为微分电路 能容易地得到尖脉冲,触发效果较好,所以都用交流触发方式。触发脉冲所加的位置多数是加在饱和管的基极上。所以使用 NPN 管的双稳电路所加的是负脉冲,而 PNP 管双稳电路所加的是正脉冲。    3 集成触发器除了用分立元件外,也可以用集成门电路组成双稳电路。但实际上因为目前有大量的集成化双稳触发器产品可供选用,如 RS 触发器、 D 触发器、 J K 触发器等等,所以一般不使用门电路搭成的双稳电路而直接选用现成产品。有延时功能的单稳电路    无稳电路有 2 个暂稳态而没有稳态,双稳电路如此有 2 个稳态而没有暂稳态。脉冲电路中常用的第 3 种电路叫单稳电路,它有一个稳态和一个暂稳态。如果也用门来作比喻,单稳电路可以看成是一扇弹簧门,平时它总是关着的,“关是它的稳态。当有人推它或拉 它时门就打开,但由于弹力作用,门很快又自动关上,恢复到原来的状态。所以“开是它的暂稳态。单稳电路常被用作定时、延时控制以与整形等。    1 集基耦合单稳电路    图 10 是一个典型的集基耦合单稳电路。它也是由两级反相器交叉耦合而成的正反应电路。它的一半和多谐振荡器相似,另一半和双稳电路相似,再加它也有一个微分触发 电路,所以可以想象出它是半个无稳电路和半个双稳电路凑合成的,它应该有一个稳态和一个暂稳态。平时它总是一管 VT1 饱和,另一管 VT2 截止,这就是它的稳态。当输入一个触发脉冲后,电路便翻转到另一种状态,但这种状态只能维持不长的时间,很快它又恢复到原来的状态。电路暂稳态的时间是 由延时元件 R 和 C 的数值决定的: t t =0.7RC 。    2 集成化单稳电路    用集成门电路也可组成单稳电路。图 11 是微分型单稳电路,它用 2 个与非门交叉连接,门 1 输出到门 2 是用微分电路耦合,门 2 输出到门 1 是直接耦合,触发脉冲加到门 1 的另一个输入端 U I 。它的暂稳态时间即定时时间为: t t = 0.7 1.3 RC 。   脉冲电路的读图要点    脉冲电路的特点是工作在开关状态,它的输入输出都是脉冲,因此分析时要抓住关键,把主次电路区分开,先认定主电路的功能,再分析辅助电路的作用。 从电路结构上抓关键找异同。前面介绍了集基耦合方式的三种根本单元电路,它们都由双管反相器构成正反应电路,这是它们的一样点。但细分析起来它们还是各有 特点的:无稳和双稳电路虽然都有对称形式,但无稳电路是用电容耦合,双稳是用电阻直接耦合有时并联有加速电容,容量一般都很小;而且双稳电路一般都有 触发电路双端或单端触发;单稳电路就很好认,它是不对称的,兼有双稳和单稳的形式。这样一分析,三种电路就很好区别了。 脉冲电路中,脉冲的生成、变换和整形都和电容器的充、放电有关,电路的时间常数即 R 和 C 的数值对确定电路的性质有极重要的意义,这一点尤为重要数字逻辑电路的用途和特点    数字电子电路中的后起之秀是数字逻辑电路。把它叫做数字电路是因为电路中传递的虽然也是脉冲,但这

    注意事项

    本文(实用电子技术基础模拟电路数字电路.doc)为本站会员(李司机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开