二维随机变量及独立性-教学设计说明.docx
概率论与数理统计教学设计课程名称概率论与数理统计课时100分钟任课教师专业与班级财务管理B1601-B1606课型新授课课题二维随机变量与其分布教材分析“二维随机变量与其分布 属于教材第三章容,位于教材的第75页至第93页.是在前一章“一维随机变量与其分布的概念提出的根底上,对两个与两个以上的随机变量进展描述。可以说,二维随机变量与其分布是对前一章一维随机变量容的总结以与综合应用。学习目标知识与技能了解二维随机变量的背景来源;了解二维随机变量的根本思想;掌握二维随机变量的适用围、根本步骤与其具体运用。过程与方法通过日常生活中常常出现的实例的引入,引导学生分析、解决问题,培养学生将实际问题转化为数学问题的能力,培养学生提出、分析、理解问题的能力,进而开展整合所学知识解决实际问题的能力。情感态度与价值观通过介绍概率论与数理统计在实际生活中的运用,激发学生自主学习的兴趣,也培养了学生的创新意识和探索精神。教学分析教学容1.二维随机变量与联合分布函数定义2.二维离散型随机变量与联合概率函数3.二维连续型随机变量与联合概率密度4.二维随机变量的边缘分布5.随机变量的相互独立性教学重点二维离散型、连续随机变量与其分布,相互独立性教学难点二维连续型随机变量与其分布教学方法与策略板书设计前50分:1.引例 3.二维离散变量2.联合分布函数定义 4.二维连续变量后50分:5.边缘分布 6.相互独立性教学时间设计1.引导课题 2分钟2.学生活动 3分钟3.二维随机变量与联合分布函数定义15分钟4.二维离散型随机变量与联合概率函数10分钟5.二维连续型随机变量与联合概率密度20分钟6.二维随机变量的边缘分布20分钟7.随机变量的相互独立性25分钟8.课堂小结 5分钟教学手段多媒体播放教学视频、PPT演示与板书演练书写相结合。教学进程教学意图教学容教学理念引出课题2分钟某地区气候状况需要考虑温度、湿度、风力等多个随机变量;研究股票的投资价值,要考虑股票的市盈率、市净率、资本报酬率等多个指标。激发学生的兴趣,让学生体会数学来源于生活。学生活动3分钟问题细化,让学生们具体考虑:日常生活中还有哪些实例符合以上特征。并总结其特点。从日常生活的经验和常识入手,调动学生的积极性。二维随机变量与联合分布函数定义15分钟1、二维随机变量假设对于试验的样本空间8/中的每个试验结果,有序变量都有确定的一对实数值与e相对应,即,那么称为二维随机变量或二维随机向量2、联合分布函数二维随机变量的联合分布函数规定为随机变量取值不大于实数的概率,同时随机变量取值不大于实数的概率,并把联合分布函数记为,即3联合分布函数的性质 (1); (2)是变量(固定)或(固定)的非减函数; (3) ,;(4)是变量(固定)或(固定)的右连续函数; (5)例题:设二维随机变量的联合分布函数为求:常数 解:由分布函数的性质得:由以上三式可解得:教师给予引导,回归到刚提出的问题上。二维离散型随机变量与联合概率函数10分二维连续型随机变量与联合概率密度20分二维随机变量的边缘分布20分随机变量的相互独立性25分4.二维离散型随机变量与联合概率函数如果二维随机变量仅可能取有限个或可列无限个值,那么,称为二维离散型随机变量二维离散型随机变量的分布可用以下联合分布率来表示:其中,也可用下边的概率分布表表示:X Y15.二维连续型随机变量与联合概率密度1对于二维随机变量(X,Y)的分布函数,如果存在一个二元非负函数,使得对于任意一对实数有成立,那么为二维连续型随机变量,为二维连续型随机变量的联合概率密度2二维连续型随机变量与联合概率密度的性质;设为二维连续型随机变量,那么对任意一条平面曲线,有;在的连续点处有;设为二维连续型随机变量,那么对平面上任一区域有例.求在D上服从均匀分布的随机变量X,Y的密度函数和分布函数,其中D为x轴、y轴与直线y=2x+1围城的三角形区域。解:如图,区域D为直角三角形RTOAB,其面积为:所以由均匀分布的定义可得,X,Y的联合密度函数为:下面来求X,Y的分布函数,1当时,2当时3当时4当时5当时综上所述,6.二维随机变量的边缘分布设为二维随机变量的联合分布函数,称为X的边缘分布函数,并记为直观可以看到 因此,边缘分布函数也可表示为 类似地,关于Y的边缘分布函数为7、二维离散型随机变量的边缘分布律设为二维离散型随机变量,为其联合概率函数,称概率为随机变量的边缘概率函数,记为并有称概率为随机变量Y的边缘概率函数,记为,并有用表格形式表示为:边缘 概率边缘概率8、二维连续型随机变量的边缘概率密度设为二维连续型随机变量的联合概率密度,由的边缘分布函数的定义有因此称 为X的边缘概率密度函数.类似地,Y的边缘概率密度函数为9、随机变量的相互独立性1定义:设为随机变量,如果对于任意实数,事件是相互独立的,即那么称相互独立。2如果与的联合分布函数等于的边缘分布函数之积,即,那么,称随机变量与相互独立3设为二维离散型随机变量,与相互独立的充分必要条件为 即 多维随机变量的相互独立性可类似定义即多维离散型随机变量的独立性有与二维相应的结论4设为二维连续型随机变量,那么与相互独立的充分必要条件为如果那么,与相互独立的充分必要条件是多维随机变量的相互独立性可类似定义即多维随机变量的联合分布函数等于每个随机变量的边缘分布函数之积,多维连续型随机变量的独立性有与二维相应的结论通过引导与具体的例题展现二维离散型随机变量。通过引导与具体的例题展现二维连续型随机变量。与一维变量进展比拟。总结特点。课堂小结5分钟通过与一维随机变量与其分布进展比拟总结相关二维随机变量与其分布的特点。通过对课堂容的小结,让学生对本节课的容连贯化、系统化。作业布置作业布置通过概率论与数理统计教学平台微信发布1.仔细阅读课本第75页至第93页;2.浏览概率论与数理统计教学平台中相关容。明确告知学生作业要求。教学评价“二维随机变量与其分布 属于教材第三章容,位于教材的第75页至第93页.是在前一章“一维随机变量与其分布的概念提出的根底上,对两个与两个以上的随机变量进展描述。可以说,二维随机变量与其分布是对前一章一维随机变量容的总结以与综合应用。在本节课的课程教学中,采用“案例教学法,通过实例吸引学生注意力,以问题为导向,以分析为重点,以应用为巩固拓展,引导学生思考、解决问题,进而使学生较快理解与掌握矩估计的根本思想和根本求解步骤。在课堂教学中要让学生多思、多练、多总结,并安排作业,让学生在脱离教师带领下自己思考做题。实践证明,在本节的教学过程中,学生均表现出较高的学习积极性和情感投入,通过交流互动说明学生已大致掌握本节容的根本思想和根本求解步骤。15 / 15